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AbstracL Recently there has been a resurgence of interest in the properties of natural images. 
Their statistics are important not only in image compression but also far the study of sensory 
processing in biology, which can be viewed as satisfying cettain ‘design criteria’. This review 
summarizes previous work on image statistics and presents our own data Perhaps the most 
notable property of natural images is an invariance to scale. We present data to support this 
claim as well 35 evidence for a hierarchical invariance in natural scenes. These symmetries 
provide a powerful description of natunl images as they g ~ d y  resttiit the class of allowed 
d i s Vib ut ions. 

1. Introduction 

We can easily distinguish images of the natural world from man-made pictures or those 
created randomly by a computer. Natural images are distinctive, because they contain 
particular types of structure. They are far from random: images constructed randomly on a 
computer practically never contain a naturalistic scene-or even a tree. Natural images are 
thus very rare among the huge space of all possible images. How can we make use of this 
fact? 

Image processing systems such as compression algorithms, analogue storage media, and 
our own visual system work with these real-world images. Thus to understand the typical 
behaviour of these systems we must first study the structure of natural scenes. We can 
then address questions like ‘How much compression should we expect to achieve?’ or 
‘How often will the playback distortion be above a critical value?’ or ‘How many bits of 
information per second does the optic nerve deliver?’ 

In this review we begin by summarizing what is known about the characteristics of 
natural images and add new findings. The study is motivated by practical examples of the 
use of such image statistics, primarily toward biological vision. In analysing images we ask 
the following questions: 

In which ways do natural images differ from random images? 
Do.natural image statistics obey q y  simple invariances? 

e What implications do these statistics have for image processing in biological visual 
systems? 

In the first section we present an overview of statistical methods in signal processing, 
with an emphasis on applications to vision. A framework is described for understanding 
visual performance in terms of design criteria which involve the statistics of natural scenes. 

t E-mail: dlr1002@cus.cam.ac.uk 

0954-898)(/94/040517+32$19.50 @ 1994 IOP Publishing Ltd 517 



518 D L R u d e m n  

Subsequently, we outline a few ways in which these images can be characterized, and 
present previous work which hints at some simple properties underlying the structure of 
natural images. Finally, we perform a detailed analysis of our data and try to quantify the 
amount of predictability or redundancy present in the images. We are able to confirm the 
scaling which was suggest by other work, and discover a new invariance related to the 
hierarchical structure of natural scenes. 

2. The statistical framework 

The images we encounter every day comprise a very sparse subset of all possible images. 
Most images simply never appear in nature, as can easily be demonstrated by creating 
random images on a computer. Imagine all 256 x 256 images as existing in a 65536- 
dimensional space, then the ‘volume’ of the space which is occupied by natural images is 
infinitesimally small. Furthermore, natural images are not Gaussian, nor are they drawn 
from any other elementary distribution of the type commonly used in image modelling. In 
Field’s words 1321 

‘...the state-space describing the probability density of natural scenes is highly 
predictable but does not have the shape that is widely presumed.’ 

The distribution of natural images is complicated. Perhaps it is something like beer 
foam, which is mostly empty but contains a thin meshwork of fluid which fills the space 
and occupies almost no volume. The fluid region represents those images which are natural 
in character. Our intuition should be that there is no ‘simple’ transformation of the space 
which removes the distribution’s complexig. The fact that the space is largely unoccupied 
expresses the redundancy in the distribution. 

Since natural images are highly non-random, we might suspect that expressing them 
on a pixel-for-pixel basis is not the most convenient choice, as it is for entirely random 
images. If there is a way to encode the most frequently occuring images as short strings of 
bits and the least likely images as longer strings (perhaps using a Huffman code [41]), then 
the amount of storage space required on average can be reduced. Most practical algorithms 
don’t work at the whole image level, but instead consider subimages such as horizontal scan 
lines (predictive coding) or 8 x 8 pixel blocks (JPEC). These are then encoded as independent 
entities, ignoring their interdependencies. The fact that such procedures are currently saving 
an order of magnitude in disk space [l] speaks for the large amount of redundancy and 
predictability contained in real images. Most importanfly, it is the statistical structure of 
these images which determines the best compression algorithm. Bot at this stage we do not 
even know how much compression could be achieved in principle, since the statistics of 
real images have not as yet been well characterized. 

Central to the discussion is the concept of an image ensemble. We imagine that each 
image Z ( r )  has associated with it a-probability of occurencet, P[l(z)], which defines 
the ensemble. Images drawn randomly from this distribution will completely represent the 
natural environment at hand. Practical questions might relate to the performance o fa  device 
or algorithm when acting on images drawn from this ensemble. 

To give an illustrative example of the statistical formulation, we ask how well a set 
of images is represented by a noisy linear encoding. Let us simplify by considering a 
onedimensional random signal @ ( x )  (band-limited and widesense stationary with zero 

t Strictly speaking. we should invoke a probability density over the space of images (with an associated measure), 
since they comprise a continuum of ‘events’. 
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ensemble mean) which is convolved with a filter f ( x )  at each point. Random noise given 
by q(x)  is added to this signal. The final encoding, y(x), may represent the signal recorded 
on analogue tape or the responses of an array of neurons. Specifically, we have 

Y(4  = (f *4M) + (1) 

and we wish to know how well @ ( x )  is represented by y(x). One way to find out is by 
reconstructing the ‘best’ estimate of @ ( x )  from the signal y ( x ) t .  

We define the best estimate, &&), to be the one with the minimum mean-squared 
error, that is 

(I@.%&) -4 (X ) lZ )  (2) 

is minimized, where the expectation value is over all signals and noise. It is well known 
that this estimator is given by the mean of the posterior distribution[651, P[@lyl: 

@e&) = p#J @ ( x )  P[@lYl (3) 

where the integral is over all @ ( x )  in the ensemble. 
The statistics of the ensemble enter via Bayes’ theorem as a prior distribution: 

and P[yl$] depends on the filter f ( x )  and the noise statistics. So we have 

This equation tells us how to go from the measurements y(x) to a best guess of the 
signal, &(x) .  When~both the signal and the noise probability disbibutions are Gaussian 
the estimate is a linear functional of the measurements. .But this is not true in general, and 
the estimator can be.quite complicated. In the above formulation it is clear that knowledge 
of the ensemble, given by P[4], is important to understanding how well the system will 
operate. 

In general P[4] must be fully characterized in order to do the above calculations. But 
this is impossible when faced with a high-dimensional signal as it would require gathering a 
huge number of images from the distribution$. Fortunately there is a regime in which only 
a few of the correlation functions of the distribution are needed-when the signal-to-noise 
ratio (SNR) is low. 

It can be shown that to lowest order in the SNR the best estimate is given by: 

where F ,  and Y are the Fourier transforms of @e,,t, f, and y. respectively, and S ( k )  
and N(k) are the ensemble power spectral densities of the signal and noise, respectively, at 
spatial frequency k .  The power spectrum of the signal ensemble can be expressed in terms 
of its second-order correlation function as 

(7) (@*(k)@(k’) )  = 2nS(k)S(k  - k’). 

t An overview of linear signal analysis and estimation can be found in the pioneering work of Wiener [88]. 
$ Just imagine how many 4 x 4 images would need to be seen in order to fill out their probability distribution. 
Suppose each pixel is quantized to 16 grey values. Then there are over IO” possible images, and we would need 
many limes this many examples in order to make a guess as to how they are distributed. 
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At higher SNR equation (6) will include higher-order correlation functions of the image 
ensemble. Note that this equation is also the first-order term in a low SNR expansion of the 
Wiener filter. 

We could now ask a question like: ‘Which choice of f ( x )  (within specified constraints) 
minimizes the expected reconshuction error?’ Once the statistical character of the problem 
is specified, we are ready not only to quantify its typical behaviour, but also to ask 
what the system’s optimal design is with respect to a given criterion. This paradigm 
has become popular in recent years, and has given rise to encouraging results when 
applied to biological vision, such as predicting neural responses [48, 50, 681, receptive 
fields [2,4,5, 10, 54,57,71,72, 80, 83, 84, 861, colour coding [3, 8, 14, 22, 59,641, stereo 
coding [53], the design of compound eyes 147, 78, 791, and even the pupil response 1491. 

The ultimate goal of the approach is to predict from first principles a measured response 
of a biological system, be it a neuron’s activity, the optimum facet spacing in a compound 
eye, or a human psychophysical threshold. In the latter category, Atick and Redlich 141 have 
predicted the optimum neural encoding of natural scenes based on the criterion of minimizing 
the representation’s redundancy. Their result matches human detection thresholds over many 
decades in light level. In constructing an approach they combine a design criterion, system 
constraints, and the measured statistics of images. These minimal ingredients allow for 
a parameter-free prediction, which implies that basic ideas of efficiency may have wide 
application in vision. 

Laughlin [48] asks how a visual neuron should best encode contrasts so as to transmit 
as much information (in the Shannon measure [76]) as possible. The answer is to transform 
contrast in such a way that the response histogram is uniform. This procedure eliminates 
the same type of redundancy present in English text where letters of the alphabet are not 
used equally often. His treatment predicts a contrast-response curve which is quite similar 
to the response properties of LMC cells in a fly’s visual system. Making this prediction 
requires the measured contrast histogram of natural images. We will return to this issue of 
response histograms later in the paper. 

The basic idea in all of these approaches is that sensory systems are well-adapted 
for processing the types of signals present in nature. Many of the proposed critera for 
efficient design are based on statistical measures. Attneave [6] and Barlow [7] suggest 
that reducing the redundancy of sensory messages is a primary goal of sensory systems. 
Linsker has presented examples of ways in which sensory encodings can be maximally 
informative [55, 56, 571. Other measures include reconstruction fidelity [57, 711, and the 
shape of neural response histograms 132, 481. All of these criteria involve the statistics of 
the neural encoding. Only by first studying the properties of natural scenes can we make 
predictions as to how best to process them. 

In summary, we often want to know how well an image processing system will work 
under normal conditions. One generally uses a statistical measure such as the average 
reconstruction error, of the amount of information the system delivers. This brings us into a 
framework which has a statistical basis and requires knowledge of natural image statistics. 

3. Gathering natural images 

Up to now we have been providing a motive for the study of natural images. Some important 
questions still remain: 

0 What should we measure? 
Which images should be in the ensemble? 
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What statistics should we compute? 

Clearly there is no ‘right’ ensemble. Each environment has its own typical characteristics 
and thus its own statistics. In interpreting the differences between these statistics we 
might seek creatures whose visual systems differ systematically with the statistics of the 
envronments they inhabit [38, 581. 

One early study characterized television images [45] in an effort to understand how best 
to encode them. More recent work has focused on outdoor images of nature [31, 13, 821. 
Our data consist of images of a wooded environment in springtime. 

Once an environment is chosen we must decide which images to capturethat is, where 
to point the camera. We might also choose to use an angular resolution or speclml sensitivity 
which mimics a particular creature’s visual systemt. Of course visual systems function in 
real time and so analysing short movies instead of still images,would add another level of 
detail. 

Finally, we must consider the statistical analysis. Ultimately one would like to know 
P[Z], the probability of occurence of any image. But, as mentioned earlier, this would 
be impossible to achieve due to the required size of the dataset. Another possibility is to 
experimentally determine the best parameters for a model P[Z], such as a Markov random 
field [33, 431. 

Perhaps the most direct approach is to catalog the correlation functions of the 
image distribution 1131. This means using image data to evaluate expressions like 
(Z(xl)Z(xz). . . Z(x,,)). But with the exception of the second-order correlation function 
(n = 2). these quantities are difficult to interpret (and to visualize, since each spatial index 
adds two dimensions to the function’s domain). The correlation functions enter naturally 
in a perturbative fashion into statistical calculations at low SNR, as discussed above. So 
although higher-order correlation functions may not provide much insight, they do have 
straightforward application. 

Characterizing an arbitrary distribution can be done through brute force (by measuring 
correlation functions, for instance). But we can also seek a simple underlying structure 
or ‘invariance’ property in the distribution. That is, the image probability could transform 
simply if the image is transformed simply. One such symmetry is translation invariance. For 
some ensembles we expect that a given image appears with equal probability regardless of 
its positional offset. Such invariances can greatly reduce the complexity of the distribution. 
They are commonly sufficient to synthesize the distributions of quantum field theories 1391, 
and also play an important role in image processing [51]. If the distribution of natural 
scenes contains no such invariance then just collecting statistics will be a useful-but not 
necessarily interesting-venture. However, we will find that natural images do indeed 
display some rather surprising symmetries. 

Since there is no way to collect enough data to fully characterize an image environment, 
our statistical description will be far from complete. We will not even be able to reproduce 
realistic images with our minimal statistical knowledge. It is interesting to consider just how 
much knowledge of this kind is necessary to do something useful. For instance, we have 
seen that under conditions of low SNR the only important statistic is the power spectrum, 
and it can be used to design the optimal low SNR filter. At high SNR every detail of the 
statistics will matter, but how much? Could we limit our knowledge to a few statistics 
which allow a nearly optimal performance? 

Effectively this is what our visual system does. The development of the mammalian 
visual system is strongly dependent on e d y  visual stimulation [ l l ,  611. In particular, it 

t Hopefully the characteristics of natural images will be fairly robust to these types of details. 
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is known that mammals raised in unusual image environments end up with functionally 
modified visual systems as adults [36]. This suggests that the visual system's development 
is influenced by the statistics of its environment, through some as yet unknown algorithm. 
Contained in the final 'wiring' of the visual system is a set of statistics about the creature's 
past visual experience. Knowing which statistics these are might provide great insight 
toward the nature of visual processing. 

4. Image statistics 

In 1952 Kretzrner [45] pioneered the modem analysis of real-world images. With 
applications to television image coding in mind, he tabulated a set of local image statistics 
such as the point histogram and the second-order correlation function. From these 
measurements he placed a lower bound on the image redundancy of about 3 bits per pixel. 

The first mention of power-law scaling in image power specbra was in a 1957 paper by 
Deriugin [28], who also measured television signals. This properly was rediscovered in 1978 
by Cohen et d [23] (also see [ZO]), and again in 1987 by both Burton and Moorhead [16] 
and Field 1311. This scaling was later studied by Tolhurst e tu l [82 ]  and by us [73,74]. The 
ensemble power spectrum (averaged over orientations) is found to behave approximately as 

S(k)  a k-z*n (8) 
where k is the modulus of the spatial frequency (in cycles deg-', for instance), and 7~ is 
measured to be small. The power spectrum is a function of a single angular scale given by 
the spatial frequency, and it changes as a power of that scale. There is no preferred angular 
scale in natural images since the form of the power spectrum is invariant to any choice of 
basic scale. Doubling the spatial frequency always reduces the power by a factor of 2-z+n. 
This is not true, for instance, for a power spectrum of the form S(k)  FS e-k/$, where ko 
acts as a 'typical' spatial frequency. 

These studies provide evidence for a certain symmetry in ensembles of natural images: 
scale invariance. Scale invariance implies simply that the image statistics do not change 
with the angular scale. Pictures of such an ensemble will have the same ensemble statistics 
regardless of the lens' focal length. More generally, the new ensemble may be se[f-uffine 
to the original one, meaning that the new images must also be multipliyl by a suitable 
constant after rescaling to make the statistics identical to the original ones. If Q [ ~ ( Q z ) ]  is 
any ensemble statistic of @(z) on scale a, then scale invariance implies that 

Q[4(z)l = Q[aV4(az)l (9) 
where U is a universal exponent (i.e. it is independent of both (Y and Q). Thus in a scale- 
invariant ensemble we can make the replacement @ ( x )  + a"@(ar) for all instances of @ 
in any expectation value. 

This is a strong statement. It greatly restricts the form of the image distribution. Such 
a property also gives us some intuition about natural scenes instead of a mere quantification 
of their statistics. For instance, it reinforces the notion that objects in the natural world can 
appear at any angular scale in an image (i.e. they can be any distance away), which is one 
plausible mechanism for producing scale invariance. 

Scale invariance is a widely studied property of critical phenomena, such as the Curie 
point of ferromagnets. Physicists study models with local (Markovian) interactions which 
give rise to 'long-range' (i.e. power-law) correlations. In order to attain scale-invariance, the 
model parameters must be chosen very precisely [89]. Interestingly, in two dimensions local 
scale and rotationally-invariant models must also be conformally invariant [19]. But since 
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images in nature are not even isotropic-the horizon has a definite orientation-we cannot 
expect them to be more generally conformally invariant. Thus to model the scale-invariant 
statistics while excluding conformal invariance, one must include distant interations. 

If natural images form a scale invariant ensemble, then we should find scaling in other 
statistics besides the power spectrum. In 1992 William Bialek and I collected natural image 
data and began a statistical analysis [70, 73, 741. Aside from noted exceptions, the work 
presented below resulted from this collaboration. We were able not only to confirm the 
scaling result, but also to find evidence for a novel invariance. 

Other work on natural images has included local principal components analysis [34,52, 
751, in which the local linear filters which maximally decorrelate the images are sought. 
The filters with highest response variance tend to have a resemblance to the oriented 
receptive fields found in the cortex, which suggests that some decorrelation process may 
be in operation. Decorrelation is commonly considered to be the first step in reducing the 
redundancy of a representation. 

The spectral reflectance properties of natural scenes have also been studied. In 1947 
Krinov [46] measured the spectral reflectances of 337 natural objects, such as grasses and 
wood, at 26 wavelengths. Maloney found that all these spectral profiles could be fit closely 
using models with 7 free parameters [59], which represents a redundancy in 19 of the 
26 dimensions. Dannemiller [26] found that the noise due to random photon catches 
effectively reduces the dimensionality to 3, which is the number of cone types present 
in the human retina. Using colourimetric measurements (and thus invoking human colour 
vision specifically), Burton and Moorehead [16] found that natural images evoke highly 
correlated responses in cones, and showed that power spectra scale approximately as I l k Z  
in each of the three cone systems. By studying properties of colour images one might tq 
to predict the optimum arrangement of retinal photoreceptors [60], colour coding [3], and 
the optimal pupil function for chromatic vision [49]. 

5. Measuring natural images 

As an image ensemble we chose a wooded environment in central New Jersey during 
springtime. These woods are the habitat of insects. small mammals. and birds, so it is 
an important sensory environment for many different types of visual systems. Since it 
constitutes only particular environment our results will not necessarily be characteristic of 
others. Another approach would be to gather images from widely varying environments 
and analyse them together as a single grand ensemble of natural scenes. 

The woods consist of trees, scrub, rocks, and a stream. An image from the ensemble 
is presented in figure 1. Translation invariance is built into this ensemble since the camera 
was pointed in random directions with small elevation angle, and images of sky or ground 
alone were avoided. Details of the measurement process are presented in the appendix. 

The luminance of a reflecting scene is proportional to the radiant flux from the 
sun. Visual systems, including cameras, adapt to this mean background value, making it 
irrelevant. It is removed from our images by considering logarithmic intensity fluctuations 
from a background level. We define the the 'log-contrast' @(z) to be 

W) = In [~ (wzo]  (10) 

where Z(z) is the measured intensity signal, and ZO is defined for each image such that 
C, '~ (Z )  = 0. This gives every image histogram zero mean. The definition of ZO is 
arbitrary, but many of our statistics are log-contrast differences in which the constant ZO 
drops out. The logarithmic measure is convenient in that it covers the whole real axis; 



524 D L Ruderman 

Figure 1. Image from the waods: rocks in a stream with background foliage. 

intensities, on the other hand, are somewhat difficult to work with since they are non- 
negative. We find the use of @ instead of I also seems to improve the observed invariances. 

The data set consists of 45 images taken at  a 15 mm focal length ( I  pixel subtends 
0.059" of visual angle) and 25 images at  an 80 mm focal length (0.01 1" per pixel). The 
digitized images are 640 x 480 pixels, from which the central 256 x 256 subimage is taken. 
At 15 mm and 80 mm focal lengths the images subtend 15" and 2.8" respectively. 

6. Statistical analysis 

Previous work has hinted at scaling in natural images. We will try first to substantiate it by 
evaluating the power specbum of our images. Digitized images are discretely sampled 
continuous images, @(z), which are drawn from a stationary distribution with power 
spectrum S ( k )  given by 

(@*(k)@(k'))  = (Zn)2S(k)8(2)(k - k') (11) 
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where @(IC) = I d %  @(z)e-'k.". The coordinate system, strictly speaking, consists of the 
azimuth and elevation angles. The pixelated image is derived from the continuous image 
as 

&.a = $(ma, (12) 

where a is the pixel spacing measured in degrees, and m, n are pixel indices which go from 
0 to 255. We want to estimate S(k)  from the discretely sampled images. 

Spectral estimation is a well explored field, a cogent summary of which can be found 
in [65]. The power spec!" is estimated using 

where zm." = @"nu), IC,, = (2ar/Ma,2as/Maj, M = 256, and i runs over all the 
images in the data set. Wm," is called the 'windowing function'; its shape determines how 
the estimate relates to the actual spectrum. We use a two-dimensional Bartletf window in 
our computations, but :the result is not strongly dependent on this choice. 

A contour plot of the power spectrum of the natural scene log-contrast is presented in 
figure 2. The contour!; are placed at constant intervals in the logarithm of the power. It 
shows a preponderance of power in low spatial frequencies along the horizontal and vertical 
orientations, which are clearly special. It is mare illuminating to plot the orientationally 
averaged spectrum, which is shown in figure 3. The plot consists of two superposed graphs, 
each from a different lens focal length. The scale is logarithmic both in spatial frequency 
and power, and the data thus plotted are nearly linear. This means that the power spectrum 
is a power-law of the form 

with q = 0.19 j, 0.01, and A = (6.47 i 0.13) x 
For a given focal length measurement difficulties arise at high spatial frequencies. 

Optical blur causes the spectrum to fall, and at the same time noise and aliasing cause 
an increase in power. We extend the spatial frequency range by simply using two focal 
lengths. The graph shows scaling of the spectrum over nearly 2.5 orders of magnitude 
in spatial frequency. The highest frequency for which the scaling is demonstrated is about 
30 cycles deg-', which corresponds to about half the acuity of the human eye [17]. These are 
thus relevant spatial frequencies for vision. Although our results derive from the logarithm 
of intensity, we find the same scaling in the power spectrum that others have found when 
using the intensity signal (we find this as well). Scaling in the power spectrum is robust 
to such a change, as well as to the obvious differences in choice of ensemble, spectral 
sensitivity, and methods of image capture. However, the exponent differs between authors 
and environments (e.g. we find 7 % -0.3 for beach images). 

This scaling of the power spectrum confirms the findings of others. But we can say 
more. First, the power spectrum alone does not tell us whether the distribution is Gaussian. 
Also, scaling should be testable through any statistic o$ our choosing. Both issues can be 
explored at the same ltime through ,the process of 'coarse-graining.' The original scaling 
ideas of Kadanoff I441 propose that a coarse-grained critical system should have the same 
statistics as the originall system, aside from a possible rescaling of the field variables. 

deg"."'. 
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Figure 2. Contour plot of ensemble power spectrum Of 45 images taken at focal length of 
15 mm. Center of figure is k = 0. Contours are placed at equal intervals in the logarithm of 
power. and spatial frequency is ploned on linear axes. 

Similarly, we can coarse-grain the images to look for scaling and the possibility of 
Gaussian statistics. The average of @ over scale N is given by 

1 ”  
@N = s c 4 m . n .  (15) 

m.n=1 

An example of this procedure is shown for N = 2 in figure 4. 
If @ is a scaling field then the probability PN(QN) should have a shape which is 

independent of N .  In the theory of critical phenomena, when a field has an anomalous 
dimension (i.e. q # 0)  it must be ‘renormalized’ when length scales are changed. This 
implies 

p N ( @ )  = I/@iMs P(@/@iMs) (16) 
where @;Ms = (@;)”*, and P is the scaling probability distribution. For a scaling field 
with anomalous dimension q / Z ,  @EMs o( N-’”*. In order to compare histogram shapes this 
RMS value must be divided out. 
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Figure 3. Orientationally averaged power specmm with standard enor bars for 15 mm and 
80 mm focal length data (overlapping). along with the regression line fined as discussed in the 
text. 

Figure 4. Block averaging procedure for N = 2. 

If @(n) scales then the probability distribution of QN should always have the same 
shape, regardless of the value of the rescaling parameter N. Figure 5 demonstrates scaling 
of the log-contrast distribution. The plot shows P(&/@”) versus @ N / & ~ ’  for N = 1, 
2, 4, 8,  16, and 32. These six graphs all lie on top of one another; they have the same 
shape A Gaussian distribution would show a parabola in the plots instead of the nearly 
linear tails we find. Histogram scaling is a much stronger statement than the scaling of a 
two-point function (i.e. the power spectrum), since it means that higher-order correlation 
functions must also scale. 

The central limit theorem states that when a large number of independent random 
variables (with finite variance) are averaged together the resulting distribution becomes 
Gaussian. The fact that our histograms do not become Gaussian even after averaging 
together nearly 1000 (32 x 32) data points is evidence for what physicists call a non- 
Gaussian scaling fixed point. Simply put, the central limit theorem does not apply since the 
variables being averaged are highly correlated. Such extended correlations are typical of a 
thermodynamic critical point, where the correlation length is infinite. 

As another example of both the scaling of statistics and the non-Gaussian character of 
the ensemble, consider the distribution of local gradients. We first block the images on a 
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-4 -3 -2 Lo&ontras? (Rescaed) 2 3 -4 -3 -2 Lo&ontras? (Rescaed) 2 3 

Figure 5. Scaling of log-conwsr histog” over scales 1, 2, 4, 8, 16, and 32. 

Figure 6. Scaling of gradient histograms. Plot shows P ( G N / G )  for N = 1, 2 4, 8, 16, 32 
with Rayleigh distribution (solid) shown for comparison. 

scale N and then calculate a discrete approximation to the magnitude of the gradient, 

G N h  n) IVdN(m,n)l .  (17) 

If @ is a scaling field then the h is toam of G should have a shape which is independent of 
N .  Figure 6 shows P(GN/&) versus GN/-, where. & is the mean of the distribution. 
If q5 were Gaussian, then this distribution would take the Rayleigh form 
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which is plotted in the figure for comparison. 
The distributions of gradients for length scales from 1 to 32 are identical in shape over 

nearly four decades in probability. There is a stark contrast between this distribution and the 
Rayleigh form. First, the histogram of gradients has a very long exponential tail where the 
Rayleigh distribution falls off much more sharply. This means there are far more regions 
of large gradient in the images than there would be if they were Gaussian. Also, there is an 
excess of small gradients, or uniform patches. These are non-Gaussian signatures of natural 
scenes. Such patterns of very large and very small gradients are seen in thermally driven 
convective turbulence, which also gives rise to non-Gaussian probability distributions with 
exponential tails [21], and displays scaling [67]. 

Scaling allows us to replace q5 (I) by u"q5(uz) without changing any of the statistics. We 
have seen that rescaling images does not change the shape of the log-contrast distribution, 
only its width @iMs. According to the scaling law this width should scale as N-".  In figure 7 
we plot @iMs versus N on a log-log scale. The graph is linear with slope -U % -0.2. 
All the local quantities we have tested scale with this same exponentt. Had the pixels 
been independent of one another, the rescaling factor would have fallen as N-'; this line 
is plotted for comparison. The variance in natural images remains characteristically larger 
than it would for white noise when images are averaged over large scales. 

529 

1 

Figure 7. Standard deviation of 4~ distribution as a function of N (log-log plot). If the images 
were made of uncorrelated noise, the standard deviation would scale as 1 / N .  as shown by the 
dotted line. 

7. Predictability in natural images 

One measure of the non-randomness of images is the amount of predictability they contain. 
Suppose we know what some sections of an image looked like, and from them we want 
to guess what the missing sections are. How well can this be done? The answer lies, as 

t The astute reader may wonder why q # 2v. since lk power spect" involves two powers of the field 6,  This 
does present something of a mystery, but it can possibly be resolved by considering the fact that the scaling may 
not be perfect and isotropic. The way orientations were averaged when computing the power specmm is different 
from the way odentations are confounded when averaging over square blocks, which might explain the difference 
in exponents. 
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one might expect, in the statistical smcture of the images. If they are composed of random 
pixels, then there is no predictability. But natural images possess long-range correlations, 
and so a large degree of predictability is expected. 

Claude Shannon, the inventor of information theoIy, held an interest in statistics of the 
English language. In a 1951 paper [77] he used the inherent knowledge of native speakers 
to place bounds on the redundancy (or predictability) of written English. He would remove 
the last character of a string of n characters from an English text, and the native speaker 
would fill in the missing character in as few tries as possible. From the histogram of the 
number of guesses until a correct response Shannon placed bounds of between 0.6 and 1.3 
bits of entropy per letter for n = 100. This represents a single letter redundancy of about 
75%. 

In 1987 Kersten asked human subjects to perform a similar task on everyday images. A 
pixel was removed from an image and a subject was asked to replace it. Using the method 
of Shannon, he placed the single pixel redundancy in natural scenes at 65%. This means 
that of all the entropy a pixel has, 65% of it is predictable from knowledge of the rest of 
the image. 

In a collaboration with Horace. Barlow and Chris Wroe in Cambridge, we used the 
natural images to make some assessments of predictability. One would ultimately like to 
know how much information a patch of image conveys about another patch some distance 
away. Such a computation would involve an immense ensemble of images so as to sample 
the distribution well. The most that can be practically accomplished is to ask about a few 
pixels at a time. For example, how much information does one pixel convey about another 
a given distance away? 

We compute Shannon's mutual information between the two pixel values, 61 and & 

. 

where p2 is the joint distribution of two pixels at a given separation, and p1 is the marginal 
distribution of a pixel. For a given displacement vector d all positions in the images 
are scanned to create a histogram of joint probabilities. From this distribution a discrete 
approximation to equation (19) is computed. 

The left graph of figure 8 shows the mutual information between two pixels as a function 
of the distance, d, between vertically separated pixels. The graph is very nearly linear on 
a log-log scale, meaning the information scales as a power-law in the separation distance: 

I (d ,  8 )  zz d-'(e) (20) 
where a(@) conveys the dependence of the slope on the angle of the separation axis. The 
right graph shows the systematic anisotropy in 01 as a function of 0 (8 = 0 corresponds 
to a horizontal separation). The fact that the slope is smallest for 8 = 90" implies that 
correlations are strongest vertically, as one might expect in images containing trees. We 
compute the single pixel nearest-neighbour redundancy to be about 10%. Kersten's much 
larger figure reflects the fact that the redundancy is present in substantially larger areas of 
the image. 

Interestingly, a similar scaling of information is found in English texts. Ebeling and 
Poschel have found that the mutual information between two letters as a function of distance 
scales as I zz d-0.37 up to distances of about 100 letters, where finite data-set noise began 
to creep into the measurement 1301. 

Note that the scaling of information with distance is quite fortuitous, as such a 
complicated statistic has no a priori reason to be scale-invariant, even if the image 
ensemble is. In a scale-invariant ensemble any single-power correlation function will scale, 
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Figure 8. Top: log-log plot of I ( d ,  e)  versus d for R = 900. Bottom: scaling exponents of 
I ( d .  e)  versus e. 

such as (@z(0)44(z)). But this is not necessarily true of a mixture of powers, such as 
((@(O)@(z) +q5z(0)~z(z))), since a change in len@ scale rescales each term by a different 
exponent (see equation (9)). and so the function changes. The information measure above 
is a special quantity which does happen to scale even though it is not a single power of the 
scaling field 4. 

We can try another measure of correlation, namely the second-order correlation 
coefficient,  given^ by 

assuming = (h) = 0. This statistic tms out not to obey a power law; instead it crosses 
over from power-law to exponential behaviour at distances larger than about 20 pixels. Since 
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scaling is a basic statistic of natural images, Shannon's mutual information may be a more 
'fundamental' measure of correlation than the second-order correlation coefficient. 

As a final example of two-point image statistics we examine the degree of 
reconstructability that one pixel provides about another. How well can & be estimated from 
a pixel @I lying certain distance away? We want a function @?(@I) which is the best guess 
for @Z given @I. The estimate which minimizes the mean-squared error, (142 - @F(@dlz), 
is 

(22) 

which is the conditional mean of @z given $1. 
Figure 9 shows pst(4) for vertically separated pixels at distances of 1, 4, and 16 pixels. 

The relative importance of different regions of the plot is indicated by an overlayed graph 
of the pixel probabilities. In the relevant region the estimate is a linear prediction, i.e. 

where m(d) is the slope of the line as a function of the separation distance between the two 
pixels. Figure 10 shows the functions m(d) and F(d) ,  the reconstruction fidelity defined as 

4341)  m(d)$l (23) 

Both are power-law in form, with exponents -0.31 and -0.72, respectively. 

I 
0.2 0.4 0.6 0.8 1 

-1 I 
pRi -1 -0.8 -0.6 -0.4 -0.2 

Figure 9. 
16 (dotted) pixels. The probability distribution of @ is plotted to show the reeion of interest. 

Estimator @mt(@) for pixels separated vertically by 1 (solid), 4 (dashed), and 

Reconstruction based on the knowledge of a single pixel is not very good. The RMS 
prediction error based on knowing a vertical neighbour is nearly 70% of the RMS pixel 
variations themselves (i.e. the error we would get if we had no such howledge). The 
estimates can improve by using more of the nearby pixels in the form of an optimal 
estimator. As more pixets are included the optimal estimator takes into account more 
and more of the image statistics in the form of joint pixel densities. Nothing particularly 
special about natural images is capturd'in the two-point pixel statistics. 
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Figure 10. ReconsIn~ction fidelity F (dashed), and slope of linear remnsmction m (dotted) as 
a function of distance d (log-log). 

Even without the complete pixel statistics we can find the optimal linear estimator of a 
pixel from its nearest neighbours (NN) 

It requires only second-order correlations. The coefficient vector a is calculated to minimize 
the expected mean-square error as 

a = c-'y (26)  

where C;j = (@;@j), yi = (@@;), and the indices i and j run over the 8 nearest neighbours. 
The coefficients ai are slightly negative along the diagonals and have values of about 0.3 
along the horizontal and vertical. This reconstruction provides an RMs error of about 50% of 
the RMS pixel fluctuations. A reconstruction which includes next-nearest neighbours brings 
the error down to 45%. 

8. A new invariance 

8.1. Filtering natural images 

The images we have been exploring are examples of the signals which the visual system 
processes. What do their statistics tell us about how this processing should be done? The 
early stages of vision, such as those in the retina, are constrained to process images locally- 
no neuron has access to the entire image [29]. The neurons which convey these signals will 
have output statistics which are determined by the images. According to various efficiency 
criteria the responses of these channels should have certain statistical properties. 

For instance, channels with signal variance constraints are optimized for information 
transfer by sending Gaussian signals [76]. Neurons have an analogous constraint in their 
function c~ since their firing r a t e  ca~sah lra tea th igh . l ev~ l~~ .ca~ot -go~negat ive .  The 
optimal encoding statistics thus depend on the imposed constraints. 
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Figure 11. A local bandpass filter. 

Figure 12. Histoogram of lhc output of a local filter. 

Fust we should determine the types of statistics which come from simple linear filtering 
of the log-contrasts (filtering the intensities gives similar results). Consider a filter of the 
form shown in figure 11. This 2 x 2 filter passes no signal at zero spatial frequency, and 
thus l o  drops out. The histogram of this filter’s output is shown in figure 12 on a semi-log 
scale. It has nearly perfect exponential tails over four decades in probability. In fact my  
local linear transformation we try (including Gabor and centmsurround filters) seems to 
produce exponential-tailed histograms, though their shapes can differ somewhat. 

Long-tailed histograms from natural scenes have also been seen by Daugman [27], 
Barlow and Tolhurst 191, and Field [32]. Field points out that such ‘sparse coding’ is a 
consequence of specific arrangements in the Fourier phases of natural images. He proposes 
that long tails have the effect of activating only a very sparse subset of the neurons which 
code images. Burr and Morrone 1151 believe that this properly of images is related to the 
existence of edges in natural scenes, and ‘signals features of interest to vision.’ Images 
drawn from a Gaussian distribution have completely random phases, and show no structural 
resemblance to natural scenes 132, 701. 

A one-sided exponential distribution maximizes’ information transmission for a given 
mean activation level, just as a Gaussian is optimal for fixed variance. If the neurons 
encoding visual stimuli=have-a-me?n .firinaweconstraint, ~then.,~eseexponentiaI histogLaC5 
are ideal, we just need to rectify them so that they are one-sided. 
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No local linear 
transformation does it. But what about local nonlinear transformations? One method 
is simply to find a pointwise transformation of the image which produces the distribution 
we want, as Laughlin does to predict contrast coding [48]. But his method does not find 
the cause of the histogram, it just re-shapes it. We prefer to seek the mechanism which 
produces the long tails and systematically 'undoes' it. 

Is there a way to transform away the exponential distributions? 

1 

.---. 
/ P 1 

I 
-6 -4 A&litude (&its of RdS) 4 6~ le-051 ' ' 

Figure U. Histogram of amplitudes of a 5 min sequence from Strauss' *The Blue Danube' 
from a compact disk recording as sampled at 44 kHz using a linear analogue-todigital conveztor 
(ADC) with 16-bit resolution. A Gaussian distribution is shown to highlight the excesses in the 
peak and the tails of the histogram. 

8.2. Ad ing  a nonlinearity 

To search for a likely candidate we should think about the possible causes of the excess 
histogram tails. Consider an analogy with music, which is an' ensemble with similar 
properties to images. The amplitudes of musical sound pressure also have exponential 
tailsit (see figure 13). The source of the long tails is the dynamics of the musical score; 
some sections are loud and some are quiet for an interval of time. If the quiet passages 
were amplified and the loud ones attenuated then the excesses at the tails and the peak of 
the distribution would move to more 'typical' values, thus diminishing the peak and tails. 
This would give the distribution a more 'rounded' or Gaussian character. Maybe a similar 
dynamic occurs in natural scenes, where locally correlated regions are either flat in texture 
(i.e. quiet) or very dynamic (loud). This suggests an origin for long exponential tails: The 
histogram is a superposition of many distributions of different variance. 

Dividing a sound waveform by its recent loudness is a local nonlinear operation. We 
can by an analogous procedure on images by normalizing log-contrast fluctuations relative 

t Exponential tails in histograms of real-world phenomena~may in fact-be quite~gend-[87]. 
t [tis also well known that many forms of Western music have scale-invariant statistics [37. 851 
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Figure 14. Variance modified image. J ( x ) .  

to their local standard deviation. This creates a new field 

(27) 

where &(x) is the local mean within the N x N block surrounding position z, and u ( z )  
is the standard deviation of Q within the block. This procedure has the effect of removing 
mean displacements from zero log-contrast and normalizing the local variance of the log- 
contrast. Patches of small local contrast will be expanded, and high contrast areas will 
he toned down. The numerator is like a centre-surround mechanism with the surround N 
times as large as the centre (1 pixel). Running the procedure on the image in figure 1 
(using N = 5 )  gives a variance modified image, $, shown in figure 14, and a standard 
deviation image, U ,  shown in figure 15. The variance normalized image is much more 
homogeneous than the original. Small fluctuations on the rock, for instance, have been 
expanded out to higher contrast. The image almost looks like a noise pattern, except for 
a few residual object borders. On the other hand, the standard deviation image, U, seems 

Q(x) -ax) 
$(I) = 

o(x) 
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Figure 15. Standard deviation image. ~ ( x ) .  

almost to highlight the object borders and to attenuate the object textures. It is very roughly 
as if variance normalization separates objects from their textures. 

We find that for the value N = 5 ,  the resulting histogram of +(I) is closest to a 
Gaussian, in that its kurtosis is nearest to that of a Gaussian (30~). For smaller N the 
kurtosis is greater, and for larger N it is less. The statistics of + are shown in figure 16. 
The variance modified images are not exactly Gaussian, but they show Gaussian signatures: 
The histogram tails of + fall off rapidly, and its gradients are Rayleigh distributed. This 
new signal is thus amenable to transfer down a dynamically limited channel. 

What about u(z)? Making images from the variance, uz(z), averaged and sampled in 
5 x 5 blocks, gives us a set of reduced size non-negative images. We can treat these in the 
same way as we did the original image data by looking at the log-contrast. Define 

((I) = I n  [u::'l 2 (28) 

where U,' is analogous to 10. The statistics of ( are very similar to those of 4, as shown 
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Figure 16. Semi-logarithmic plots of the statistics of variance modified images. *. Top: 
histogram of * (rescaled IO unit variance) shown with a Gaussian for comparison . Bottom: 
histogram of gradients of shown with a Rayleigh distribution for comparison . 

in figure 17. Both the log-coneast and log-contrast gradient distributions of the original 
images and the variance images are quite similar. The power specha are compared between 
q5 and the variance images before subsampling, so they are on the same spatial frequency 
scale. The slopes of the spectra agree completely at low frequency (they have been shifted 
to match vertically). At high frequency the variance image spectrum falls off, as expected 
from the.10~-pass nature of the statistic. 

8.3. Reiteraring the procedure 

For every statistic we measure, the variance images are identical to the original ones. This 
means the patterns of local variances in natural images are statistically much like the patterns 
of intensity. Does this mean the entire procedure can be reiterated? The answer is yes, but 
the results are not quite as clean as before. Start with the full resolution variance images 
and produce two datsets, [(x) and E(%), which are the variance normalized and standard 
deviation images, respectively, of: (see figure 18). The most Gaussian < statistics are 
found by averaging and sampling in 11 x 11 blocks (see figure 19). This is the length scale 
at which the kurtosis of 5 crosses zero. Similarly, the distribution of gradients is closest to 
Rayleigh when [ is sampled and averaged over 11 x 11 blocks; it is shown in figure 19. This 
procedure, iterated a second time, has produced another set of nearly Gaussian data plus 
a low resolution set of variances. How do these new variances compare with the original 
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Figure 17. Statistics of e images compmd to the original images, 4 . Top: histogram of 
log-contrasts (sealed to unit variance, semi-log plot). Middle: histogram of aadients (scaled to 
unit mean, semi-log plot). Bottom: power spectra of 5 images (falls off nt high frequency) and 
original images (arbitrary spatial frequency units, log-log plot). 

images? Define a new log-contrast: 

Its statistics (averaged over 11 x 11 blocks) are shown in figure 20, along with those of the 
original image log-contrasts. Again, the match is nearly perfect. Note that this was not a 
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Figure 18. The iterated variance normalization procedure. 

Figure 19. Statistics of < images compared with those of a Gaussian field . Top: histogram of 
< (rescaled to unit variance. semi-log plot). Bottom: histogram of gradients of < (rescaled to 
unit mean, remi-log plot). 

~ ~~ ~ ~~~~~~~~~~ ~ 
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true re-iteration of the procedure, as that would have meant averaging over 5 x 5 blocks in 
reduced images of U .  But this latter~method does not reproduce the statistics quite as well. 

~~ 

The statistics of natural images 

Figure 20. Statistics of z images compared with the original images, q5 . Top: histogram of 
logsontrasts (resealed to unit variance, semi-log plot). Bottom: histogram of gradients of L 

(resealed to unit mean, semi-log plot). 

Due to a lack of data, the procedure cannot be reasonably performed a third time. If 
it could be continued indefinitely then we have found a nonlinear invariance of the image 
ensemble. Local variances themselves have local variances with the same statistics. Thus 
correlations exist not only between image intensities, but also between local variances. The 
variance normalization procedure is analogous to spectral whitening in that it removes the 
correlation, though it is done hierarchically instead. The invariance has implications for 
coding: one could iterate the procedure to produce at each stage a set of Gaussian signals 
which could be communicated efficiently. In the end images could be made completely 
Gaussian. Most importantly, this has all been accomplished with local processing. These 
results may also imply that naturalistic scenes could be generated from Gaussian noise by 
inverting this procedure. Accomplishing this would mean that the structure of P[$l has 
been completely understood. 

In short, we have discovered a new type of iterative invariance in natural scenes. This 
variance normalization pm@ure is remeniscent of the 'contrast gain control' mechanism 
found in the visual cortex [35, 631. It may simply serve to limit the variance of neural 
responses by reducing the tails of their distribution. Iterating the procedure reproduces the 
same statistics again and again, which implies that a universal algorithm may serve ideally 
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to process these image components. 
Note that the procedure described above is not particularly advanced or complicated. 

The simple square regions we tried may not be optimal at producing this effect-maybe 
circulax ones, or weighted averages would perform better. Furthermore, this technique 
works to Gaussianize both log-contrast images and the original intensity images (data not 
shown). Finetuning of this procedure was not necessary, which suggests that the effects of 
variance normalization are both basic and robust. 

9. Information in the retina 

We have seen that natural scenes are statistically quite different from white noise. They 
are highly structured and correlated over large regions. In the space of all possible images 
they occupy an infinitesimal volume, a notion which can be quantified using the concept of 
entropy. The ensemble of natural scenes is quite restricted and thus has much less entropy 
than a white noise ensemble. 

The entropy of natural scenes is an important quantity which is related to how much 
‘space’ is needed to represent them. If every image consisted of a uniform grey, then just 
one number would specify the whole image: its grey level. On the other hand, if the 
ensemble really was white noise, then every pixel would need to he retained since they are 
all totally uncorrelated. Natural images lie somewhere in between. 

In order to put a number on the entropy we must invoke an actual image representation 
which includes noise; otherwise the entropy of a continuous distribution is infinite. For 
vision the primary representation is at the level of the photoreceptor array, where the scene 
is first captured. The question of image entropy can be posed as: ‘Given the encoding of 
images by the photoreceptors, what channel capacity is required to transmit ,them to the 
brain?’ This question is relevant for the visual system since conveying natural images is 
what the optic nerve does. How much information does each nerve fiber need to be able to 
send? 

The 
information in the encoding is 

Suppose the photoreceptors represent an image as a. set of responses {y,]. 

= H[(y.]] - H[noise] (30) 
where H is the entropy of a random variable. The second part of this equation is valid 
under the assumption that the photoreceptor noise is additive and independent of the signal. 
We use a linear model for the encodingt. First the image is low-pass filtered by the optics 
according to the diffraction-limited incoherent point-spread function, whose spatial transfer 
function is (approximately) [I21 

(31) 
for Jkl c kc and zero otherwise. Then the photoreceptors sample this’signal, and Gaussian 
white noise of variance u2 is added to their responses. Thus 

M ( k )  = 1 - Ikl/$ 

y. = J M(a: - a:+t4d + v. (32) 

t The responses are more realistically linear in the image intensity, and not the log-contrast. However we find 
that they both have nearly the same power spectrum, ana so the results will be identical. Thus 6 above may be 
freely interchanged with I for the purposes of this calculation. 
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where x, is the position of the nth receptor, and (qmq.) = O ~ S , , ~ .  This defines the image 
encoding. 

The information per receptor is given by 

An upper bound to this quantity can be found by assuming that the images, and thus the 
responses, have greater entropy than they actually possess. This is'achieved by assigning a 
Gaussian distribution of images with the same power spectrum measured for natural scenes. 
This distribution has the greatest entropy consistent with that power spectrum, and so the 
information is overestimated. 

The receptors are placed in a hexagonal arrangement (i.e. on a triangular lattice), as is 
present in the fovea [25]; they are spaced as far apart as possible so that there is no a!iasing, 
which is nearly the situation in the fovea? [18]. The spacing is thus 

(34) 

If the receptors were on a square lattice the no aliasing condition  would^ require a 13% 
increase in the density of receptors, as the spacing would be exactly nlk,. The area of a 
unit cell in the hexagonally arranged photoreceptor lattice is A, = ( f i /2 )a2 .  

In the limit of an infinite lattice the Fourier components of a stationary Gaussian signal 
are independent, and the total information is the sum of the information in each component: 

2 n  
f i k  ' 

a=-- ~ 

Here Z is the information per receptor, A,  is the area of the unit cell in the lattice. and u2 
is the variance of the noise. 

We use S(k) c( l/k2-o, with q taking its measured value, and we express the noise 
level in terms of the SNR in a receptor. It is important to have an information measure to 
compare with. Ignoring correlations between receptors gives independent Gaussian signals 
in each receptor, which maximizes the information rate at a given SNR. Spatial redundancy 
is measured as the difference rind - Z, which tells us how much information capacity is 
effectively wasted due to spatial correlations. For a Gaussian channel at a given SNR (ratio 
of signal variance to noise variance), 

(35) 
The quantities are compared in figure 21 for SNR ranging from 1 to 1000. The spatial 
redundancy is always greater than a factor of two. Perhaps more interestingly, each receptor 
only conveys a few bits of information per image, which seems quite small. In the fovea 
there is approximately one ganglion cell fiber leaving the eye for each receptor [24]. If there 
are 20 new images per second presented to the eye (an upper bound), then each ganglion cell 
would require an information capacity of about 50 baud, which is well within the 300 baud 
or so capacity estimated in some neurons [69]. If the one million or so optic nerve fibers 
must each convey this much information, then the whole optic nerve should operate at about 
50 Mbaud, which is five times the capacity of an Ethernet cable. Of course, new random 
images do not appear every 50ms; instead they are highly correlated over time. So the true 
figure is certainly much less than this, possibly by many orders of magnitude. 

Such structure is not evident outside the central 1' or so ofthe human retina where the situation is complicated 
by the presence of rods. Cones become much more sparse and randomly arranged in the periphery. Our model 
receptor lattice has theheproperties of a very large fovea. 

z ,d - _  - 1 log [I -!- SNR] . 
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Figure 21. Upper bound to the information per image per receptor as a function of SNR for 
natural scenes with 11 = 0.19 (lower curve), and the information capacity of each receptor (upper 
curve). 

10. Conclusions 

Previous work has suggested that natural scenes possess scale invariance. We have also 
shown this to be the case through the scaling of the power specmm, local histograms, and 
pixel information. Our data also demonstrate an approximate invariance to a new symmetry: 
variance normalization. Images of local pixel variances seem to have the same statistics 
as the image intensities themselves. Furthermore this process may work recursively, as 
implied by our data. 

Understanding the appearance of scale invariance is straightforward. It seems reasonable 
that objects in the image can occur at any distance, and some objects even range in size- 
trees and rocks for instance.. When captured in images this means they span many angular 
scales, and this can produce a scaleinvariant ensemble. Another possibility is that the 
objects and scenes themselves are self-similar, as suggested by the success of fractal image 
generation [66] and fractal image compression methods [40]. 

The reasons for the variance normalization invariance are not as intuitive, however. 
We sought a method for removing the non-Gaussian image statistics. At the same time 
an invariance appeared. Either we were lucky or there is something fundamental about 
this type of procedure. It may be a very salient property of natural images that they can 
be 'Gaussianized' via this iterative scheme. As the nonlinearities present in the visual 
system begin to be systematically studied, it is important to understand what effect they 
have on the encoding of images. The outcome of variance normalization suggests that these 
nonlinearities may prove to be a very rich area of research. 

The statistics we have measured are low-dimensional projections of a high-dimensional 
probability distribution. Consider the beer foam analogy once again. Suppose it has smaller 
bubbles in the middle than elsewhere, and so the fluid density is greater there. A two- 
dimensional projection of the foam (i.e. a marginal distribution created by averaging over 
one variable) will show this increase in density but not the fact that it is made of bubbles. 
Similarly, one may have to search in very high dimensions in order to visualize the true 
complexity of the natural image distribution. Finding invariances in the distribution helps 
us to reduce its inhinsic dimensionality. 

While the image statistics are interesting on their own, they also have practical use. 
Image compression algorithms work through a combination of knowledge about image 
statistics and psychophysical thresholds [42]. Image restoration procedures ultimately rely 
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on prior or ‘Bayesian’ knowledge of the image ensemble [81]. But perhaps the most 
exciting application of scene statistics is in understanding sensory processing in vision. In 
order to answer the question ‘How well designed is a creature’s visual system?, we need 
three things: a criterion of merit, a set of design constraints, and natural image statistics. 
Measuring natural scenes is essential to gaining a truly ecological understanding of vision. 
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Appendix 

All images were taken at eye level (about 1.7 m) from random locations in the park. Due 
to the presence of deer ticks carrying Lyme ,disease most images were taken from positions 
on trails; this may cause a systematic bias in image content. The lens was set to focus at 
infinity, and all shots were at an aperture of f/5.6. Due to the optics’ limited depth of field, 
nearby objects would appear out of focus. If any were present in a scene, the azimuthal 
angle of the camera was changed just enough to remove the offending object from view. 
The camera’s elevation angle was no more than about &lo” in any image. 

Images were gathered using a Sony Mavica MVC-5500 still video CCD camera equipped 
with a 9.5-123.5 mm zoom lens. This device writes analogue video frames onto small 
diskettes which are later read off a playback unit (Sony MVR-6500). The video signal is 
NTSC format RGB. These three signals (red, green and blue) were digitized to 8 bits (0-255) 
using a Silicon Graphics VideoLab board. To reduce the effects of analogue playback noise 
we average the result of 32 frame captures to produce floating-point numbers in the range 
0-255. Note that since analogue noise is present in the system before digitiiation, repeated 
quantization followed by averaging alows us to get around quantization noise. 

We use the CIE luminance as a signal. It is derived from the data using the formula [62] 

Y =0.59G+0.3R+0.115. (AI) 
This quantity was calibrated against grey cards of known reflectance to give an intensity 
signal, Z(Y), which is proportional to the illuminant flux through the lens. Since the camera 
had a limited dynamic range, saturation was a possibility. We discard images that have 
more than about 1% of the pixels saturating. Those pixels that do saturate are set either to 
the lowest calibrated luminance value or the highest. 
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