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In order to establish a search asymmetry, one must run an experiment

with a symmetric design and get asymmetric results.  Given an asymmetric

design, one expects asymmetric results and such results do not imply an

asymmetry in the search mechanisms.  In this paper I argue that a number

of experiments purporting to show search asymmetries contain built-in

design asymmetries.  A saliency model of visual search predicts the results

of these experiments using only a simple measure of target-distractor

similarity, without reliance on asymmetric search mechanisms.  These

results have implications for search mechanisms and for other

experiments purporting to show search asymmetries.

1. Introduction: The case for a model of visual search

without search asymmetries

Our lives are filled with activities that one may think of as “visual search.”  We

search our bookcases for a particular book, look for our keys, and try to find a
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friend’s face in a crowd.  In studying visual search, an experimental subject

typically looks for a target item among some number of other items, referred to as

distractors.  In some cases, the number of distractors has little effect on the ease

of finding the target (efficient search), while in other cases each additional

distractor makes the search task significantly more difficult (inefficient search).

(See Wolfe, 1996, for a review of the literature.)

Many researchers have studied visual search as a means toward learning about

mechanisms in the visual system.  Researchers have taken efficient search as

evidence of the existence in the visual system of a basic feature detector that

responds to the features of the target, but not to the features of any of the

distractors.  Another paradigm uses visual search experiments as evidence for

whether or not the visual system codes two feature dimensions independently

(Driver, McLeod, & Dienes, 1992; Treisman, 1988).

Within this framework, researchers have traditionally considered search

asymmetries particularly interesting and fortuitous.  Suppose that search for an

item containing a particular feature, t, among distractors with a different feature,

d, is efficient, but the reverse is inefficient.  Researchers have taken such an

asymmetry as evidence of the existence in the visual system of a basic feature

detector that responds to the feature t, but the absence of a detector for the feature

d.  This seems to suggest a particular importance for feature t in the visual system,

and the lack of importance for feature d.

However, there are a number of reasons to study search not as a means to

uncover visual system mechanisms, but for its own sake, or to learn about visual
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attention.  People interested in user-interface design want to know how to draw

attention when desired, and not annoy or mislead observers when attention is not

required.  Researchers studying cockpit design want pilots to notice warning

lights and easily scan their instruments.  In image compression, perhaps regions of

an image that do not draw attention may be more heavily compressed without

noticeable reduction in image quality.

Search asymmetries may be interesting to researchers hoping to reveal visual

system mechanisms, but they make modelling visual search more complicated,

since each new experiment potentially adds a new component to the model.

Traditional accounts of visual search (e.g. Dick, 1989; Driver et al., 1992; Ivry &

Cohen, 1992; Nagy & Cone, 1996; Treisman & Gelade, 1980; Treisman &

Gormican, 1988) suggest that it is best modelled by a list of feature detectors and

associated search asymmetries.  These accounts suggest that a visual search model

requires red-not-pink and moving-not-stationary detectors, but no pink-not-red or

stationary-not-moving, and so on.  Such models are more complicated than

models in which a single measure of similarity between the target and distractors

describes performance.  Furthermore, if visual search is best described by a list of

asymmetries, one has to run many experiments to ferret out all the asymmetries,

in order to get a complete, rather complicated, model.

Simpler models are desirable for applications, as well as, in certain cases, for

the study of human vision.  From this point of view, one would prefer models of

visual search based on a measure of similarity between target and distractors,

rather than models that enumerate search asymmetries.  However, perhaps this is
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simply not the way the visual system works.  Perhaps visual search performance

is truly best described by a list of asymmetries, in which case one must make do

with a complicated model.

Section 2 of this paper argues that many classic search asymmetries do not

necessarily reveal the existence of asymmetric visual search mechanisms.  To

obtain evidence of an asymmetric mechanism, one must run an experiment with a

symmetric design and get asymmetric results.  However, many experiments

purporting to show search asymmetry are asymmetrically designed.  Section 3

offers a model that can qualitatively predict many known results by considering

target-distractor similarity, with no need for asymmetric search mechanisms.

This reinterpretation of these search results serves as a reminder of the

following caution about studying visual system mechanisms through

psychophysical experiments: one’s conclusions about mechanisms are only as

good as one’s underlying model.  With one model, the visual system appears to

contain numerous asymmetric search mechanisms.  Another model calls into

question many of those asymmetries.  What did we learn, then, about

mechanisms?

Section 2 discusses the requirements for a symmetric experiment, and re-

examines a number of motion, color, and orientation search experiments and

shows that they may be viewed as containing built-in design asymmetries.

Section 3 presents a measure of target-distractor similarity, and shows that it

qualitatively predicts the results of these experiments without need for any

asymmetric search mechanisms. While this paper calls into question a number of
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search asymmetries involving simple features such as motion, color, and

orientation, there may yet be search asymmetries involving more complex

features, such as shape, line length, and 3-D appearance.  Section 4 suggests ways

in which the analysis in this paper might be extended to deal with search

asymmetries involving more complex features.

2. Asymmetric experimental designs

An expression is said to be symmetric if parts of it may be interchanged without

changing the whole (Daintith & Nelson, 1989).  This section asks whether this

condition was met by a number of experiments intended to demonstrate search

asymmetries.

What does a symmetric experimental design look like?  A pair of experiments

has a symmetric design if it preserves relative differences between features, and

only changes absolute feature values.  The simplest way to visualize this is to look

at the experiments in some appropriate uniform feature space, such that the

Euclidean distance between two points in the feature space determines the

discriminability of the two features.  A uniform feature space is one such that if

one plots contours of equal discriminability (e.g. what colors are equally

discriminable from mid-gray), they form circles, and the circles are the same size

throughout the space.  Plotting all of the elements of the experimental stimuli in

this feature space, a pair of experiments has a symmetric design if the feature

space representations differ only by a rotation, reflection, and/or translation.
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Figure 1 shows what a pair of experiments with a symmetric design might look

like in feature space.

This paper enumerates three classes of asymmetric designs.  Some search

experiments have obvious design asymmetries.  Other designs appear symmetric

or asymmetric, depending upon in which feature space one views the

experiments.  In such cases, one can make an argument for or against asymmetry

based upon independent knowledge of the appropriate feature space.  In the

absence of such knowledge, one might choose the feature space that yields the

more parsimonious explanation of the results.  Given the same explanatory power,

the more parsimonious explanation of the results is the one that is simpler – i.e. its

model has fewer parameters, where each asymmetry essentially counts as at least

one parameter.  Finally, a number of designs initially appear symmetric, but

become asymmetric once one considers the background or frame of reference for

the experiment.  A pair of experiments may have symmetrically switched the

target and distractors, but not properly switched the background or frame of

reference, thus changing the relationship of the target to the background in an

asymmetric way.

Case 1: A clearly asymmetric design

In one classic motion search asymmetry, it is said that search for a moving

target among stationary distractors is efficient (Dick, Ullman, & Sagi, 1987),

whereas search for a stationary target among moving distractors is inefficient
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(Dick, 1989).  This has been taken as evidence for a special status for motion

detectors in the visual system.

However, consider how this effect is typically tested and demonstrated (e.g.

Dick, 1989): in the case of search for a stationary target, at any given instant in

time, the observers sees distractors moving in a number of different directions.

This is hardly symmetric to a condition in which, at a given instant, the target

moves in a single direction, while the distractors do not move.  Figure 2 shows

what the two experiments look like, plotted in 2-D velocity space.

The obvious, more symmetric, design would be to compare search for a moving

target to search for a stationary target among distractors that coherently move in a

single direction.  Royden, Wolfe, & Klempen, (2000) have run this experiment,

and we discuss it later in this paper.

Case 2: Symmetry depends upon the proper feature space

Two other classic motion search results also claim to demonstrate search

asymmetries (Driver et al, 1992; Ivry & Cohen, 1992).  These experiments appear

to have a symmetric design when viewed in one feature space, but appear to have

built-in design asymmetries when viewed in another.  This paper argues that the

most parsimonious feature space for these experiments is the one in which the

experimental designs appear asymmetric, and that thus the experiments should not

be used to demonstrate search asymmetries.

Ivry & Cohen (1992) report efficient search for a quickly oscillating target

among slowly oscillating distractors, but inefficient search for the more slowly
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oscillating target.  We depict this situation in Figure 3.  Viewed in Cartesian

speed-direction space, the design of these two experiments appears symmetric.

However, viewed in 2-D velocity space, the design appears asymmetric.  No

rotation, translation, or reflection takes one experiment to the other.

Another set of experiments claims to show the asymmetry that motion direction

is coded independently of speed, but speed is not coded independently of

direction.  In this experimental paradigm, observers search for a target item with a

unique value along some “relevant” feature dimension, while experimenters add

variability along an “irrelevant” feature dimension.  If the added variability

impairs search for the target, this has been taken as evidence that the two feature

dimensions are not coded independently in the visual system.  If the added

variability has no effect on the search task, researchers take this to signify

independent coding of the two feature dimensions.

Driver et al. (1992) test motion speed and direction as the relevant and

irrelevant features.  Adding variability in motion direction impairs search for a

unique speed (the speed task). However, adding variability in motion speed does

not impair search for a unique motion direction (the direction task).  The authors

conclude that speed is not coded independently of direction, but direction is coded

independently of speed.

In this case, the relevant thing to check is whether the transformation, in going

from a homogeneous search condition to a heterogeneous one, is the same in the

speed task as in the direction task.  Viewed in Cartesian speed-direction space,

these two pairs of experiments seem to have a nearly symmetric design, as shown
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in Figure 4.  The transformation from Figure 4c to Figure 4d is similar to the

transformation from Figure 4a to Figure 4b.  The different numbers of distractor

classes and difficulties in relating the scales of direction and speed detract from

the symmetry of the design.  Strictly speaking, experiments should have

completely symmetric design, but one might argue that, viewed in speed-direction

space, these experiments might be close enough to symmetrical to safely draw

conclusions about search asymmetries.

However, viewed in 2-D velocity space (Figure 5), the experiments look quite

different.  In this space, adding variability in direction changes the experiment in

a different way than adding variability in speed.  Thus, it is not surprising that

added variability impacted the speed task in a different way than the direction

task.  If 2-D velocity space is the correct space in which to view these

experiments, that itself implies that speed is not encoded independently of

direction – one of the conclusions drawn by Driver et al. (1992).  The

interpretation that their experimental design was asymmetric calls into question

not this conclusion, but rather the asymmetry that direction is encoded

independently of speed, but not vice versa.

In both motion search experiments discussed in this section, representation in

Cartesian speed-direction space leads to the interpretation of the experimental

designs as (fairly) symmetric, thus supporting the conclusion that each set of

experiments found a search asymmetry.  Representation in 2-D velocity space

leads one to interpret the designs as asymmetric, and thus draw no conclusions

about asymmetric search mechanisms.  Which is the best feature space to use?
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In some cases, one has independent knowledge of the best feature space to

choose.  Such knowledge might be based upon which space was a uniform feature

space, i.e. in which space discriminability contours were circles of uniform size

throughout the space.  Such independent knowledge is available for, e.g., color,

but not for motion.

In the absence of independent knowledge of the appropriate feature space, I

argue that one should choose 2-D velocity space and the interpretation without

search asymmetries.  If a simple, symmetric, model can explain the results of all

three of the classic motion search results, just by representing the motions in 2-D

velocity space, that model explains the results in a simpler way than a model that

chooses Cartesian speed-direction space and must contain asymmetric search

mechanisms.

Case 3: Take into account the background when judging design

symmetry

A number of experimental designs initially seem quite symmetric (Nagy &

Cohn, 1996; Winterbottom & Nagy, 1999).  Take, for instance, search for a

unique saturation, depicted in Figures 6a and 6bi.  With only one target type, and

homogeneous distractors, this design appears completely symmetric—a simple

reflection or rotation in feature space transforms one experiment into the other.

Nagy & Cone (1996) report that search for a more saturated target is easier than

search for a less saturated target.  They suggest that the apparent search
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asymmetry may be due to more saturated signals travelling faster through the

visual system than less saturated.

However, consider what the picture looks like once we consider the background

color, marked with a “B” in Figure 6.  The background was a dark gray for both

experiments.  Dark gray, being unsaturated, is closer to the less saturated colors

used than the more saturated colors.  Thus, when we add the background to our

representation of these experiments, the design no longer appears symmetric.  No

longer can a simple reflection or rotation in feature space transform one

experiment into the other.

One cannot ignore the background in search displays.  Consider an extreme

example in which the target is nearly indistinguishable from the background; this

search task is likely to be difficult, regardless of the color of the distractors.  On

the other hand, search for a target that is distinguishable from the background

should be easy when the distractors are barely distinguishable from the

background, regardless of the color of the distractors.  At the very least, models

and experimental designs should consider contrast between the target/distractors

and the background, as opposed to absolute feature values.

Figure 7 shows displays of search for a more or less saturated target against a

background more saturated than target or distractors.  This background, while

clearly discriminable from both target and distractors, is closer in color to the

more saturated elements.  Against this background it appears likely that search for

a more saturated target would be more difficult than for a less saturated target.
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From Figure 8, we might expect no asymmetry when searching for a target

differing from the distractors only in hue, against a dark gray background.  In this

case, the design of the two experiments is completely symmetric even considering

the background, and Nagy & Cone (1996) find no search asymmetry.  (Treisman

& Gormican [1988] found an asymmetry in search for a unique hue.  However,

these asymmetries were small, and D’Zmura [1991] and Nagy & Cone [1996]

were unable to replicate this result.)

Similarly, Winterbottom and Nagy (1999) have presented the following color

search experiment.  In their first experiment, they compare search for a light gray

target among homogeneous mid-gray distractors, and among heterogeneous

distractors of the same luminance, but varying degrees of red or green.  Figure 9

depicts this situation.  They find no difference between the heterogeneous and

homogeneous cases.

Then they perform a similar experiment, shifting the target and distractors –

but, notably, not the background – a bit in the red direction.  Thus, observers

search for a pinkish target among distractors that are more red than in the previous

experiment.  Figure 10 depicts the situation.  In this experiment, Winterbottom &

Nagy (1999) find significantly more difficult search in the heterogeneous case.

They conclude that observers can make use of an independent luminance channel

to distinguish between target and distractors when the target is achromatic, but

cannot make use of such an achromatic mechanism when the target is not

achromatic.  However, again they base their conclusions upon an assumption of

design symmetry of the two experiments.  When one considers the background,
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the experimental design no longer appears fully symmetric.  One cannot transform

the feature space plots of the first pair of experiments (Figure 9) into the second

pair of experiments (Figure 10) using only a combination of rotation, reflection,

and translation.

In orientation search, the “background” may also account for known search

asymmetries.  Treisman & Gormican (1988) show that observers search

efficiently for an oblique line among vertical lines, but search inefficiently for a

vertical line among obliques.  They suggest that perhaps observers expect vertical

lines more than oblique, and thus oblique lines draw attention because they

violate expectations.  They demonstrate that the search asymmetry reverses when

one presents displays surrounded by an oblique rectangular frame.  Asymmetric

expectations are one possible interpretation of these results – another is that the

rectangular shape of the display (either the aperture or the border of the computer

monitor) may contribute vertical and horizontal orientation estimates, whose

existence makes the design asymmetric.  Mori (1999) has not been able to

replicate Treisman’s result with the oblique frame, however, for reasons that

remain unclear.  He does find that the asymmetry reverses when he surrounds

each display element by an oblique rectangular frame.

Now, let us revisit the asymmetry of efficient search for a moving object among

stationary, but inefficient search for a stationary object among objects moving in

random directions.  Section 2, Case 1 of this paper argued that a more symmetric

design would compare search for a moving object to search for a stationary object

among distractors moving coherently in one direction.
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Royden et al. (2000) ran this more symmetrically designed experiment.  They

found efficient search for a stationary target, under these conditions.  However,

search for a moving target was still somewhat more efficient than search for a

stationary target.  This might suggest a remaining asymmetric mechanism in

motion search.  However, they lit the room such that observers could see the

border of the monitor and a number of other stationary objects.  Arguably, the

stationary background makes the two search tasks asymmetric, and one would

expect search for a stationary target to be less efficient than search for a moving

target, due to similarity of the stationary target to the stationary background.

3. Explaining search results without asymmetric

mechanisms

This paper argues that a number of experiments have built-in design

asymmetries, and thus may not indicate the existence of asymmetric search

mechanisms.  However, many models of visual search predict little effect from

these design asymmetries.  Take for instance, the asymmetry of Winterbottom &

Nagy (1999) (see Figures 9 & 10).  A number of models of visual search (e.g.

Treisman & Gelade, 1980; Palmer, Ames, & Lindsey, 1983) depend

predominantly on the difference between the target and the type of distractor most

easily confused with the target.  Winterbottom & Nagy’s (1999) target and the

distractor type most similar to it lie always at the same distance.  Thus these

models predict the same performance in the two sets of experiments, and

deviation from equality might indicate an asymmetric search mechanism.
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Furthermore, the target and distractors have, in each condition, the same degree of

linear separability.  Thus, linear separability models of visual search (Bauer,

Jolicoeur, & Cowan, 1996; D’Zmura, 1991) also interpret the asymmetric

performance as evidence of the existence of asymmetric mechanisms.  In a sense,

the symmetry of the design depends upon the model of visual search.

Therefore, I must not only argue that the search experiments had asymmetric

design, but also demonstrate the existence of a model that predicts the

experimental results without reference to asymmetric mechanisms.  This section

offers a simple search model that predicts the results of the experiments discussed

above, without reference to search asymmetries.  This model is more

parsimonious than previous explanations, since it relates search performance to a

simple measure of target-distractor similarity, without asymmetric mechanisms.

The saliency model for visual search

The model that predicts these experimental results without asymmetric

mechanisms is as follows (Rosenholtz, 1999).  First, represent the features of each

display element as a point, p i, in an appropriate uniform feature space (e.g.

uniform color space).  From the distribution of the features present in the display,

compute the mean and covariance of the distractor features, µ and Σ, respectively.

One can add internal noise at this stage, by adding the noise covariance to the

covariance of the distractors.  The model then defines target saliency as the

Mahalanobis distance, ∆, between the target feature vector, T, and the mean of the

distractor distribution, where
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In this equation, T and µ are vectors, Σ is a matrix, and the prime indicates a

vector transpose.

Essentially, the model uses, as the measure of target saliency, the number of

standard deviations between the target feature vector and the mean distractor

feature vector.  In the simplest version of the model, the more salient the target,

the easier the search.

One way to account for effects of the background upon the search task is to

count the background as a distractor.  What weight the background should have

remains an open question.  For color search, perhaps one should weight the

background according to the proportion of the display area it accounts for – thus

target saliency depends upon the average color of the display.  Alternatively, the

visual system may reduce the weight of the background, judging it an unlikely

candidate for the target.  The qualitative predictions in this paper do not require a

concrete answer as to how to weight the background.

In many cases, one can immediately tell from the representation of the stimuli

in feature space whether the model predicts efficient or inefficient search.  The

figures that follow represent the mean and covariance of the distractors by the 1 σ

covariance ellipse (and sometimes the 2 σ, 3 σ, etc.), centered at the mean

distractor feature vector.  When the target falls within this ellipse, the saliency

model predicts inefficient search.  The farther outside these ellipses the target lies,
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the easier the predicted search.  For more subtle cases calculating the saliency, ∆,

clarifies the prediction.

Predicting motion search results

A previous paper (Rosenholtz, 1999) has already shown that this model predicts

the results of the three classic motion search asymmetries.  In the original moving

vs. stationary experiments shown in Figure 2, the stationary target has zero

salience, since its velocity lies right at the mean of the distractor velocities.

Therefore, the saliency model correctly predicts inefficient search for a stationary

target among randomly moving distractors.  A moving target among stationary

distractors has large saliency (the actual value depends upon the target speed

relative to the amount of internal noise), and the model correctly predicts efficient

search.

Figure 11 depicts the situation for Royden et al.’s (2000) experiment, in which

the moving distractors move coherently.  Here the stationary background

arbitrarily counts as 1/30 of the distractors.  The height of the ellipses indicates

the amount of internal noise added.  The presence of a stationary background

causes the ellipse about the moving distractors to spread towards the origin.

Thus, the stationary target lies closer to the 1 σ ellipse than the moving target, and

has lower saliency.  Because of the visibility of the stationary background, the

model predicts somewhat less efficient search for a stationary target. This

situation is akin to search for a vertically oriented line among oblique lines, with a

visible vertical frame around the display.
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Recall that Ivry & Cohen (1992) report efficient search for a quickly oscillating

target among slowly oscillating distractors, but inefficient search for the more

slowly oscillating target.  Figure 12 depicts this situation.  The saliency of the

slowly oscillating target is less than 1, while the saliency of the quickly oscillating

target is significantly larger than 1.  Thus, the model correctly predicts the

experimental results, without reference to asymmetric mechanisms.

Consideration of visible stationary objects, such as the border of the monitor,

causes the model to predict an even larger difference between search for a fast and

a slowly oscillating target.

The motion search experiments depicted in Figure 5 involved adding variability

in motion direction or speed, with the intent to probe independent coding of speed

and direction.  Using isotropic, normally distributed internal noise with standard

deviation 0.2 deg/s, we find target saliencies of roughly 4.3 and 3.4 for search for

a unique speed among homogeneous and heterogeneous distractors, respectively

(Figures 5a and 5b).  For search for a unique direction among homogeneous and

heterogeneous distractors (Figures 5c & 5d), we find average saliencies of 2.5 and

2.3, respectively.  One can easily believe, from these numbers, that adding

variability in direction significantly affects search for a unique speed, but adding

variability in speed does not significantly affect search for a unique direction.

Thus, the saliency model qualitatively predicts the results of all three classic

motion search asymmetries, demonstrating that one can model the results without

relying upon asymmetric search mechanisms.
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Predicting color search results

Figure 13 depicts the experiments that purported to show asymmetry in search

for a unique saturation.  The plots show the 1- and 2 σ covariance ellipses.  Here,

the width (minor axis) of the ellipse indicates the internal noise used, and the

weight given the background is equal to the total weight of the distractors.  The

more saturated target lies farther outside the 2 σ ellipse than the less saturated

target, leading to the prediction of more efficient search for the more saturated

target, in agreement with experimental results.

Figure 14 shows the situation for Winterbottom and Nagy’s (1999)

experiments, with the same proportional weighting of the background as in the

previous example.  The internal noise is set to have a standard deviation of one

half the difference between the most similar colors in the display.  From Figures

14a and 14b, one can see that the gray target has the same saliency in the two

conditions, and the model correctly predicts no difference in performance for

homogeneous vs. heterogeneous distractors.  On the other hand, the pink target in

Figure 14c has higher saliency than in Figure 14d, and the model correctly

predicts easier search in the homogeneous condition.

The saliency model qualitatively predicts these color search “asymmetries,”

again demonstrating that one can model the results without relying upon

asymmetric search mechanisms.
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4. Conclusions

The analysis in this paper has demonstrated that a number of asymmetrical

results in visual search experiments involving low-level features such as motion

and color may not indicate the presence of asymmetric mechanisms in the visual

system.  The experiments used to demonstrate these asymmetries contain design

asymmetries, and thus are inconclusive when it comes to proving search

asymmetries.

This paper has also shown that one can model the results of these experiments

using a simple saliency model, based upon a measure of target-distractor

similarity with no need for asymmetric mechanisms.  The fit of the model is

somewhat sensitive to the choice of the weighting for the background as

compared to the distractors, as well as to the choice of internal noise.  Further

work remains to select these parameters.  The point here is merely that a simple

model exists that can predict the experimental results without the need of

asymmetric mechanisms.

These results are good news for modelling of search and attention for

application purposes, since they suggest that a simple model may suffice to

predict the results of a broad range of search results.  The results call into question

a number of conclusions about search mechanisms that have been drawn based on

these experiments and earlier models of visual search.

The process of analyzing the design asymmetries of a number of motion, color,

and orientation search experiments has suggested a number of new experiments,
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aimed at the question of whether search asymmetries will remain when tested

with more symmetric designs.  What happens when searching for a stationary

target among moving distractors in a motion Ganzfeld?  What happens when one

changes the background color in color search displays?  These suggested

experiments bring up the point that the saliency model is fundamentally a model

of popout – of rapid search for an oddball display element.  Changes in the

background in some of these suggested experiments may significantly change the

appearance of the target and distractors (see Figure 7), which could complicate a

task of search for a target with a particular appearance.

Though this paper has only discussed asymmetries in search for basic, low-

level features, its analysis of the asymmetry of search experiments has

implications for examining purported asymmetries in other feature domains.  One

should ask a number of questions of such experiments.  Do the experiments seem

to be symmetric?  If not, asymmetric results provide no evidence of asymmetric

mechanisms.  Do the experiments seem symmetric in one feature space, but

asymmetric in another, and might the latter feature space be the more appropriate

one in which to view the experiments?  Finally, in many cases the background or

area surrounding the stimulus contains features relevant to the search task.  Do the

experiments preserve the relationship between the background features and the

target and distractors?

Motion, color, and orientation are probably among the best understood feature

domains.  Researchers have a good idea of the measured features, and the

appropriate feature space for each of these domains.  The analysis here cannot yet
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explain asymmetries in feature domains for which it is unknown what features the

visual system measures and how those features are quantified.  For example,

researchers have not yet determined the correct feature spaces for curvature, line

length, proximity, shape (Treisman & Gormican, 1988) and 3-D appearance

(Enns & Rensink, 1991; Sun & Perona, 1996).  These representation problems

need to be solved before one can determine whether asymmetries in these feature

spaces are true asymmetries.

At first glance, it seems more difficult to explain away these asymmetries, and

perhaps they are true asymmetries.  However, it is possible that an account

without asymmetries will appear, once we know the appropriate feature space.

Take the example of search for a curved line among straight being more

efficient than vice versa (Treisman & Gormican, 1988).  For this experiment,

observers searched for a straight line among randomly oriented curved lines.  In

differential geometry, there is the notion of a curvature vector (see, e.g.

Lipschutz, 1969).  At a given point on a planar curve, this vector is perpendicular

to the curve and points toward the center of the circle that best fits the curve at

that point.  The length of this vector is equal to the curvature at that point.

Suppose that the curved and straight lines were represented by this curvature

vector.  For a straight line, the vector would have zero length (zero curvature),

while for the curved lines the vector would have non-zero length but random

orientation due to the random orientation of the curved lines.  Thus, in this feature

space, search for a curved line among straight, and vice versa, would look much
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like search for a moving element among stationary, and vice versa, as in Figure 2.

In this feature space, the experiment appears to have an asymmetrical design.

As another example, consider the “asymmetry” that search for a C among O’s

is more efficient that vice versa.  The standard account of this asymmetry is that a

feature detector responds strongly to the C’s but not as strongly to the O’s, and

that it is easier to detect a high response among low than vice versa.

Suppose instead that a feature detector responds throughout the image, rather

than giving a single response to each letter.  Let the average responses to a C and

an O be µC and µO, respectively.  The average response µC need not be greater

than µO.  One might easily imagine that the detector response to different parts of

a C might be more variable than the response to different parts of an O – an O is,

after all, more homogeneous than a C.  Let the standard deviations of the

responses to a C and an O be σC and σO, where σC>σO.  Then the saliency of a

target C among O’s is |µC−µO|/σO, which is larger than the saliency of a target O

among C’s, | µC −µO|/σC, due to the larger variability in response to a C.  Thus, the

saliency model would correctly predict easier search for a C among O’s than vice

versa, without requiring an asymmetric search mechanism in the classic sense.

The asymmetry lies not in the search mechanisms, but in the inhomogeneity of a

C relative to an O.

The visual system may yet prove to have asymmetric mechanisms when it

comes to visual search.  However, by calling into question a number of
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asymmetries in simple features such as motion, color, and orientation, the analysis

here suggests that such asymmetries may be the exception, rather than the rule, as

previously thought.
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Figure 1: A sample pair of experiments with symmetric design, represented in a uniform

feature space.  A design is symmetric if a distance-preserving transformation (reflection,

rotation, and/or translation) takes the feature-space representation of one experiment into

the other experiment of the pair.  In this, as in all feature space diagrams in this paper, a

disk (•••• ) represents the target, and a cross (××××) represents each type of distractor.
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Figure 2: Search for a moving (a) vs. stationary (b) target, in feature space.  Note that this

pair of experiments does not appear to have a symmetric design.  The inset figures depict a

“cartoon” version of the stimulus, with the target and distractors again represented by (•••• )

and (××××), and arrows indicating motion.  In the actual displays, target and distractors had the

same shape.  No attempt has been made to replicate the number, size, or density of display

elements in these cartoon representations.
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Figure 3: Search for a slowly oscillating target (a, c, e) vs. search for a quickly oscillating

target (b, d, f).  In speed-direction space (c, d), the design appears symmetric, but not in 2-D

velocity space (e, f).  Cartoon versions of the stimuli are shown in (a, b).



30

(a) (b)

(c) (d)

speed

π 2π

direction

speed

π 2π

direction

speed

π−π

direction

speed

π−π

direction

Figure 4: Search for a unique speed (a, b) or direction (c, d).  In the homogeneous conditions

(a, c), the distractors and target have the same value along the irrelevant feature dimension

(direction, speed, respectively).  In the heterogeneous conditions (b, d), the distractors vary

along the irrelevant dimension.  In speed-direction space, shown here, the design of the two

tasks, of search for a unique speed and for a unique direction, appears relatively symmetric.
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Figure 5: Search for a unique speed (a, b) or direction (c, d).  See caption for Figure 4.  In

2-D velocity space, the design of the two tasks appears asymmetric.



32

BB

luminance

saturation

luminance

saturation
(a) (b)

Figure 6: Search for a more saturated (e.g. red) target among less saturated (e.g. pink)

distractors (a) and vice versa (b).  Once we take into account the background color (B), the

experimental design, which appears symmetric when one ignores the background color,

appears asymmetric.
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Figure 7: Search for a more saturated (red) target among less saturated (pink) distractors

(a) and vice versa (b), against a saturated magenta background.  It appears easier to find the

less saturated target against this background.
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Figure 8: Search for a color differing only in hue, e.g. search for a yellow target among

orange distractors (a) and vice versa (b).  In these plots, angle represents hue, distance from

the origin represents saturation, and depth into the page indicates luminance (the

background lies at a lower luminance than the target and distractors).  These experiments

appear to have a completely symmetric design, and we would expect no asymmetry in search

performance, in agreement with experimental results.
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Figure 9: Search for a light gray target among (a) homogeneous mid-gray distractors and (b)

distractors with added variability in the red-green direction.  Displays used a dark-gray

background.
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Figure 10: Search for a light pink target among (a) homogeneous darker pink distractors,

and (b) distractors with added variability in the red-green direction.  The target and

distractors have been shifted in the red direction, relative to the experiment shown in Figure

8.  The background remains a dark gray.
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Figure 11: (a) Search for a stationary target among coherently moving distractors; (b)

search for a moving target among stationary distractors.  In both cases, observers could see

a stationary background (B), e.g. the border of the monitor.  Counting this background as a

distractor causes the distribution of distractors to be pulled toward the stationary target (a).

Thus, we correctly predict efficient search for a stationary target, but somewhat less efficient

than search for a moving target.
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Figure 12: Search for a slowly oscillating target among quickly oscillating distractors (a) and

vice versa (b).  The slowly oscillating target (a) lies within the 1 σσσσ covariance ellipse shown,

and has a saliency less than one.  The quickly oscillating target  (b) lies outside the 1 σσσσ

covariance ellipse, and has a saliency of more than one.  The saliency model correctly

predicts easier search for a quickly oscillating target.
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Figure 13: Search for a more saturated target among less saturated distractors (a) and vice

versa (b).  The model correctly predicts easier search for the more saturated target.
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Figure 14: Search for a light gray target (a, b) or a light pink target (c, d) among

homogeneous (a, c) or heterogeneous (b, d) distractors.  The saliency model correctly

predicts easier search for a pink target among homogeneous distractors than among

heterogeneous.
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Footnotes:

                                                  

i Though in principle we should be representing color experiments

feature space like CIELAB, the figures in this paper opt for a

space, and/or the space used by the original experimenter.  F

symmetry of these particular experiments, this use of a non- u

should have minimal effect, as their asymmetry is due solely to 

relationship between the background and the display elements.


