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Preface

I first become interested in studying vision when, as an undergraduate, I read the first chapter of David
Marr’s book Vision (Marr 1982). In that chapter, he articulates the view that vision can be understood
as a system that extracts an explicit representation of the world from the retinal image, and that our
understanding of human vision is usefully informed by consideration of machine vision algorithms that
accomplish the same task. My studies, to that point, had focused on physics and computer science, and
this was my first exposure to the notion that psychological questions (e.g. How does vision work?) could
be connected to physics (e.g. image formation) and computer science (e.g. image processing). I found the
idea sufficiently exciting that I pursued study in psychology.

Subsequently, I ended up studying colour constancy because I viewed it as a relatively simple model
problem that embodies the general processing task faced by vision: how can the visual system create a
useful representation of surface properties (e.g. colour appearance) from a retinal image that confounds
the physical properties of surfaces with those of the illuminant? An attractive feature of colour constancy is
that there has been substantial progress both in our understanding of human performance and also in our
understanding of how to achieve constancy in computer vision systems. In principle, though, these two lines
can stand separately—one need not model human performance by drawing on the computational work,
and computational solutions to colour constancy have application in digital image processing whether or
not they connect to human performance. Indeed, in much of the literature the promise of connections
between computation and performance has not been explicitly pursued. The idea that an understanding
of the computational requirements of colour constancy can inform our study of human performance has,
however, remained tantalizing.

In my own work, I have pursued both quantitative measurements of human constancy and have
considered the computer vision problem presented by colour constancy. My hope remains that the two
lines of research can indeed be brought together in a satisfactory fashion. In the present chapter, we review
the current state of this enterprise, with particular emphasis on how psychophysical experiments can be
structured so that the results speak directly to whether a particular computational theory is a good model
of human colour vision.

David H. Brainard
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Introduction

Object recognition is difficult because there is no simple relation between an object’s prop-
erties and the retinal image. Where the object is located, how it is oriented, and how it
1s illuminated also affect the image. Moreover, the relation is under-determined: multiple
physical configurations can give rise to the same retinal image.

In the case of object colour, the spectral power distribution of the light reflected from an
object depends not only on the object’s intrinsic surface reflectance, but also factors extrinsic
to the object, such as the illumination. The relation between intrinsic reflectance, extrinsic
illumination, and the colour signal reflected to the eye is shown schematically in Fig. 10.1.
The light incident on a surface is characterized by its spectral power distribution, E(1). A
small surface element reflects a fraction of the incident illuminant to the eye. The surface
reflectance function, S(1), specifies this fraction as a function of wavelength. The spectrum
of the light reaching the eye is called the colour signal and is given by C(L) = E(A)S(A).
Information about C(%) is encoded by three classes of cone photoreceptors, the L, M, and
S cones.

The top two patches rendered in Fig. 10.2 illustrate the large effect that a typical change
in natural illumination (see Wyszecki and Stiles 1982) can have on the colour signal. This
effect might lead us to expect that the colour appearance of objects should vary radically,
depending as much on the current conditions of illumination as on the object’s surface
reflectance. Yet the very fact that we can sensibly refer to objects as having a colour indicates
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Figure 10.1 Effect of changing the illuminant on light reflected to the eye. The light incident on a surface is characterized
by its spectral power distribution E(4). A small surface element reflects a fraction of the incident illuminant to the eye.
The surface reflectance function S(2) specifies this fraction as a function of wavelength. The spectrum of light reaching
the eye is called the colour signal, and is given by C(4) = E(4)S(4). Information about C() is encoded by three classes
of cone photoreceptors, the L, M, and S cones. Note that this is a simplified imaging model. In general, the function 5(.)

depends on the geometry of the observer, illuminant, and object.
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otherwise. Somehow our visual system stabilizes the colour appearance of objects against
changes in illumination, a perceptual effect that is referred to as colour constancy.

Because the illumination is the most salient object-extrinsic factor that affects the colour
signal, it is natural that emphasis has been placed on understanding how changing the
illumination affects object colour appearance. In a typical colour constancy experiment,
the independent variable is the illumination and the dependent variable is a measure of
colour appearance (Helson 1938; Helson and Jeffers 1940; Helson and Michels 1948; Hunt
1950; Burnham et al. 1957; McCann et al. 1976; Arend and Reeves 1986; Valberg and
Lange-Malecki 1990; Arend ef al. 1991; Brainard and Wandell 1992; Lucassen and Walraven
1993, 1996; Bauml 1994, 1995; Brainard et al. 1997; Brainard 1998). These various experi-
ments employ different stimulus configurations and psychophysical tasks, but taken as a
whole they support the view that human vision exhibits a reasonable degree of colour
constancy.

Recall that the top two patches of Fig. 10.2 illustrate the limiting case, where a single
surface reflectance is seen under multiple illuminations. Although this case illustrates the
effect of the illuminant, it fails to capture an essential feature of the computational problem

Huminant 1 uminant 2
Wavelength (nm) Wavelength (nm)
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Figure 10.2 Renderings of two surfaces under two illuminants. The top row shows the same surface rendered under two
different illuminants. Each rendering was obtained using an illuminant spectral power distribution and surface
reflectance function to compute the spectrum of the colour signal. From this the Smith—Pokorny estimates (Smith and
Pokorny 1975; DeMarco et al. 1992) of the L, M and S cone spectral sensitivities were used to obtain the quantal
absorption rates of each cone class in response to the colour signal. These, in turn, were used, together with typical red,
green, and blue phosphor emission spectra and monitor gamma curves, to compute RGB coordinates for the rendering.
The RGB coordinates were chosen using standard methods (e.g. Brainard 1995) so that the light they cause to be emitted
from the monitor has the same effect on the cones as the colour signal being rendered. The RGB coordinates were used to
produce the figure by methods outside of the authors’ control. The spectral plots show the surface reflectance functions

and illuminant spectral power distributions used for this example. (See also colour Plate 28 in the centre of this book.)
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faced by a visual system that attempts to achieve colour constancy. This is the ambiguity
created because of the interaction between illuminant and surface reflectance, an ambiguity
illustrated if we consider Fig. 10.2 in its entirety. The rendered patches in the second row of
the plate show the effect of the same illuminant change on the information encoded about
an additional surface. Note that when seen under the first illuminant, this second surface
presents the same spectral signature as does the first surface under the second illuminant.

When we consider both illuminant and surface variation, the essential ambiguity under-
lying colour constancy emerges: how can the visual system determine which object is
present in the world if the information reaching the eye is identical for two different object—
lluminant confgurations? Clearly colour constancy is not possible in general, since the
visual system cannot distinguish the two simple scenes rendered in the top right and bottom
left patches of Fig. 10.2.

Given that colour constancy is not possible in general, it makes little sense to provide a
simple answer to the question of how colour constant human vision is. It is more sensible to
investigate constancy for some specified ensemble of scenes (Maloney 1999). Of particular
interest are ensembles that are representative of scenes we encounter in daily viewing.

[n this chapter, our aim 1s to link two lines of research. The first is theoretical work on the
computational problem of colour constancy. The goal of computational theories is to define
particular ensembles of scenes in which some degree of colour constancy is possible, and to
express algorithms that achieve constancy for these ensembles. Computational theories of
colour constancy stand independent of their relevance to human vision. None the less, we
have found that the computational work provides useful guidance for a research programme
designed to understand human colour vision. Qur treatment of the computational work
1s intended primarily to clarify how computational models can be elaborated to make
predictions about human performance.

The second line of research is empirical measurements of human colour constancy made
in our laboratory. Here the emphasis is on studies of performance for stimulus conditions
closely related to natural viewing, and on measurements that connect to computational
theory.

Computational theory

Most computational theories of colour constancy (e.g. Buchsbaum 1980; D’Zmura and
Lennie 1986; Lee 1986; Maloney and Wandell 1986; Trussell and Vrhel 1991; D’Zmura
and Iverson 1993; Funt and Drew 1993; D’Zmura et al. 1995; Brainard and Freeman 1997;
Finlayson et al. 1997) share the same basic two-step framework. In the first step, the image
is analysed to yield an estimate of illuminant properties. In the second step, this estimate is
used to process the light reflected to the eye from each surface. The second step produces a
description of surface properties that is approximately independent of the actual illuminant.
Within this two-step framework, individual theories are distinguished by the ensemble of
scenes to which they are meant to apply and by how they accomplish each step.

To illustrate how computational work can provide a basis for developing statements about
human performance, it is useful to consider one theory in some detail. For this illustrative
purpose we have chosen Buchsbaum’s classic (1980) theory, expressed with respect to the
human visual system.
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As emphasized above, any computational theory must define a restricted ensemble of
scenes to which it applies. In the case of Buchsbaum’s theory a single scene in the ensemble
consists of a collection of flat matte surfaces arranged in a single plane and illuminated
diffusely by spatially uniform illumination. Light from each surface in the scene is reflected
to the eye. The eye contains three classes of cone photoreceptors (L, M, and S cones) that
encode the spectral properties of the light reflected from each surface to the eye. Thus the
image may be specified by the quantal absorption rates of the L, M, and S cones at each
image location. This simplified ensemble of visual scenes is sometimes referred to as the
Mondrian World because of the resemblance of its individual scenes to paintings by the
Dutch artist Piet Mondrian (Land and McCann 1971; see also Maloney 1999).

For any scene from the Mondrian World, we can describe the spectral power distribution
of the illuminant by a function of wavelength E(A4) and the spectral reflectance of each
surface by a function §j(4). The light reflected from the jth surface to the eye then has
spectral power distribution G(A) = E(4)Sj(4). It is convenient to discretize these spectral
quantities and express them as vectors (e.g. Wandell 1987; Brainard 1995). Thus we can
use the vector e to describe E(4), where e 1s an N; -dimensional column vector. The entries
of e represent the power of the illuminant at N, sample wavelengths A, spaced evenly
across the visible spectrum. Similarly, we can represent the surface reflectance functions
by the N;-dimensional column vector sj, where the nth entry of sj is Sj(A,). Given this
representation, the spectral power distribution reflected to the eye from the jth surface is

¢; = diag(e) s; = diag(s;) e, (10.1)

where the function diag() creates a diagonal matrix with the entries of its argument on the
diagonal.

The information about the spectrum of light encoded by a single class of cones is the rate
at which photons are absorbed by the photopigment contained within the cone. This rate
may be computed from the cone’s spectral sensitivity. Let L(A) be the spectral sensitivity of
the L cones, M(4) the spectral sensitivity of the M cones, and S(A) the spectral sensitivity
of the S cones. Form the 3 by N; matrix R, where the nth entry of the first row of R is
L(Ap), the nth entry of the second row is M(4,,), and the nth entry of the third row is S(4,,).
We can then compute the quantal absorption rates of the three classes of cones in response
to a spectral power distribution ¢;, through the equation

ri = R (10.2)

where r; 1s a three-dimensional column vector whose entries are the quantal absorption
rates for the L, M, and S cones respectively.

A feature of the Mondrian World is that the minimal spatial structure of the images
does not carry information about the illuminant. Thus we can summarize the information
available from the image about the illuminant by the list of quantal absorption rates {r;}. In
addition, the ordering of the elements in the list is not important. We refer to the list {r;} as
the colour statistics of the image.

[t is straightforward to show that when we restrict attention to the Mondrian World,
colour constancy remains an under-determined computational problem. It is possible to
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choose two illuminants and two collections of surfaces that produce identical colour stat-
istics. Thus Buchsbaum added additional constraints to the ensemble of scenes to which his
theory applies. The first constraint concerned the spectral form of individual illuminants
and surfaces. Rather than allowing arbitrary choices of e and the sj, Buchsbaum assumed
that both illuminants and surfaces were constrained to lie within three-dimensional linear
models. For illuminants, this assumption is that the illuminant e can be written as e = B.w.
where B. is an N; by 3 dimensional matrix and w, is a three-dimensional column vector.
The columns of the matrix B, are referred to as the basis vectors for the model, while the
entries of the vector we, are referred to as the model weights for the particular illuminant e.
For surfaces, the linear model assumption is similar. In this case we write s; = Bywsj with
where B; is an N, by 3 dimensional matrix and wy; is a three-dimensional column vector.
We can combine the linear model constraints with Equations 10.1 and 10.2 to obtain

There 1s considerable evidence that small-dimensional linear models provide a reasonable
description of many illuminants and surfaces (e.g. Cohen 1964; Judd et al. 1964; Maloney
1986; Parkkinen et al. 1989; Jaaskelainen et al. 1990; Romero et al. 1997; see Maloney 1992).

A second constraint on the scenes was that the spatial average of the surfaces in any
particular scene is constant across scenes. This is often referred to as the Grey World
assumption.

To understand how colour constancy is possible in a Mondrian World with scenes con-
strained as described above, let s be the spatial average of the sj and T be the spatial average
of the corresponding rj. Then we can write

r = R diag(s)B.we.. (10.4)

This follows because the spatial averaging operation commutes with the linear process of
image formation described by Equation 10.3. If the spatial average of the surface reflectance
is known, then Equation 10.4 may be inverted to solve for the illuminant:

ée=B.M;'r (10.5)

5

where M; is the three-by-three matrix given by [R diag(s)B.]. The matrix M is invertible
because the dimension of the linear model for illuminants (3) is matched to the number of
human cone types (L, M, and S).
Given the estimate of the illuminant e, computation of the individual s;, is obtained
through
si=B,M_ 1 (10.6)

where M. = [R diag(e)B;]. The matrix M, is invertible because the dimension of the linear
model] for surfaces (3) is also matched to the number of human cone types (L, M, and S).
Equation 10.5 is the key to Buchsbaum’s algorithm. By assuming that the spatial average
of surface reflectances in the scene, s, is known, it is possible to form the matrix M, and
apply Equation 10.5 to estimate the illuminant. Although Buchsbaum’s theory is designed
for the Mondrian World with linear model constraints, the estimation procedure may be
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applied to any set of image data. The estimate will be accurate to the extent that (1) the scene
conforms to the Mondrian World assumptions; (2) the linear models B, and B describe
the illuminant and surfaces that comprise the scene; and (3) the actual spatial average of
surfaces matches the assumed s.

Note that in Equation 10.5 the illuminant estimate depends on the scene only through the
spatial average of the receptor responses, r. In this sense, the spatial average summarizes the
scene with respect to the illuminant estimate obtained by Buchsbaum’s algorithm. Several
other theories (e.g. Maloney and Wandell 1986; Forsyth 1990; Trussell and Vrhel 1991;
D’Zmura et al. 1995; Brainard and Freeman 1997; Finlayson et al. 1997) are also designed
for the Mondrian World. As with Buchsbaum’s theory, the algorithms associated with these
theories work 1n two steps, first estimating the illuminant and then using the illuminant
estimate to obtain surface reflectance estimates. These theories differ from Buchsbaum’s
primarily in what information is used to make the illuminant estimate. For example, the
illuminant estimate returned by Maloney and Wandell’s (1986) algorithm depends on the
colour statistics only through their covariance matrix, while that returned by Forsyth’s
(1990) algorithm depends only on the convex hull of the colour statistics. As we will
see below, understanding which properties of the colour statistics affect an algorithm’s
estimate makes possible empirical tests of the algorithm’s usefulness as a model of human
performance.

Although we will not consider them further in this chapter, it is worth noting that
there is a growing literature on theories that operate for richer scenes than those within
the Mondrian World (D’Zmura and Lennie 1986; Hurlbert 1986; Lee 1986; Tominaga and
Wandell 1989; D’Zmura and Iverson 1993; Funtand Drew 1993; see Hurlbert 1998; Maloney
1999). The algorithms associated with these theories generally estimate the illuminant using
both information contained in the colour statistics and information contained in the spatial
structure of the image.

Linking computation and performance

How can we employ Buchsbaum’s (1980) theory (or any computational algorithm) as a
model of human performance? It is not entirely obvious how to proceed. For example, the
algorithm produces estimates of the illuminant spectral power distributions and surface
reflectance functions, whereas human observers make psychophysical judgements. Such
judgements are not of the direct spectral functions but rather assess, in one way or another,
the colour appearance of illuminants and surfaces in the scene. Thus the algorithm output
and human judgements are not commensurate. To develop an algorithm into a model
requires additional linking theory.

Suppose that o is a vector whose entries describe the perceptual experience of colour. To
connect an algorithm such as Buchsbaum’s to human performance, we can suppose that o
is related to estimated surface reflectance s by some unknown but fixed function (), so that
o = f(s). Although the form of f() is unknown, we will assume that it does not depend on
context and that it is one-to-one. This simple linking assumption does not allow us to predict
colour names from algorithm output. But it does allow the following general prediction
to be made about the relation between human performance and algorithm output: two
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surfaces seen in the context of different images should appear the same if, and only if, the
algorithm estimates the same surface reflectance for each surface. We will refer to this idea
as the match-prediction linking hypothesis.

[f we accept the match-prediction linking hypothesis, we can make predictions about
human performance. Using a psychophysical procedure, we establish pairs of stimuli that,
when seen in the context of different images, appear the same. A typical procedure would
be asymmetric colour matching (e.g. Burnham et al. 1957; Stiles 1967; Arend and Reeves
1986; Brainard and Wandell 1992; Brainard et al. 1997). Given pairs of stimuli that match
across contexts, we ask whether the surface reflectances estimated by an algorithm for these
stimuli also match. To the extent that they do, the algorithm provides a good description of
human performance.

The difficulty with taking this approach is that an algorithm’s specific estimates depend
on a number of parameter choices. For example, in Buchsbaum’s algorithm the choice of
linear models B, and B, will affect the estimated surface reflectances. These would either
have to be set through parameter search or clever guess. Although this 1s not necessarily
prohibitive, it seems desirable to investigate more directly whether the core principles of a
computational theory can be used to understand human performance.

For Buchsbaum’s algorithm, Equation 10.5 shows that the illuminant estimate it returns
depends on the image only through the spatial average r; if we have two different images
with the same spatial average (r), the algorithm will return the same illuminant estimate. In
addition, the surface reflectance function estimated at a location depends on the image only
through the light reflected from the surface at that location (rj) and the illuminant estimate
(see eqn 10.6). Thus if two images have the same spatial average and we embed a surface
that reflects the same light to the eye in each image, Buchsbaum’s algorithm is a candidate
model for human performance only if the two surfaces appear the same. This prediction
holds independent of the choice of linear models B, and B,.

[n the next section we consider experiments that measure human colour constancy, with
the goal of connecting the experiments to the ideas discussed above.

Colour constancy in the nearly natural image

The effect of the illuminant

To allow precise stimulus specification and control, many experiments that attempt to
quantify colour constancy employ rather simple stimuli. One configuration that has been
used extensively in recent years is a computer simulation of a scene consisting of flat matte
surfaces seen under diffuse illumination (e.g. Arend and Reeves 1986; Troost and de Weert
1991: Brainard and Wandell 1992; Arend 1993; Bauml 1994, 1995; Lucassen and Walraven
1996). These stimuli are essentially instantiations of scenes from the Mondrian World.
Recent experiments on colour appearance also employ closely related stimuli (e.g. Wesner
and Shevell 1992; Singer and D’Zmura 1994; Jenness and Shevell 1995; Delahunt and
Brainard 2000).

When Mondrian World scenes are simulated on monitors, however, they appear some-
what artificial. This is probably not due to problems of the simulation but rather to the
fact that the scenes that match the Mondrian World assumptions are rare in nature and the
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Figure 10.3 Room apparatus. Schematic of the experimental room. The dimensions of the experimental room were
approximately 4 m x 3 m. Four triads of computer-controlled lights provided the ambient illumination. A projection
colorimeter allowed adjustment of the colour appearance of a test patch located on the far wall of the room. (Adopted

from Figure 1 of Brainard 1998.)

visual system may not treat them in the same way as it does natural images. Indeed, one
can argue that seemingly simple scenes are very difficult for the visual system to parse. We
might expect that before using colour statistics to estimate the illuminant, the visual system
attempts to determine which regions are objects and which are light sources, which image
variations represent illumination boundaries, and which represent variations in reflected
light due to geometric factors (see Adelson 1999; Gilchrist et al. 1999). If this is the case, the
processes that normally make these determinations may produce unstable or conflicting
results when presented with impoverished stimuli. As a result, performance measured for
simple stimuli could be much more difficult to understand than performance for stimuli
which provide a rich set of cues.

These considerations motivated us to study colour constancy using stimuli consisting
of actual illuminated surfaces, configured in three dimensions. By doing so, we hoped to
study constancy as it operates in natural viewing. In the work reported here, however, we
focus on results obtained using scenes that are (approximately) uniformly illuminated. This
simplifies the comparison of human and algorithmic performance, since it 1s not necessary
to consider processes that segment the image into distinctly illuminated regions.

The apparatus used in the first set of experiments is an entire room, shown schematically
in Fig. 10.3 and described in detail elsewhere (Speigle and Brainard 1996; Brainard et al.
1997; Brainard 1998). The ambient illumination of the room is produced by three sets of
computer-controlled stage lamps arranged in four triads. One set has red filters, one has
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sreen filters, and one has blue filters. The light from each triad passes through a diffuser to
minimize coloured shadows. By varying the intensities of the three sets of lamps, we can
vary the spectral power distribution of the ambient illumination.

A test surface on the far wall of the room is located so that it can be illuminated by a
projection colorimeter. The illumination from the colorimeter consists of a mixture of red,
green, and blue primaries. This illumination is focused and aligned so that it is spatially
coincident with the test surface: it is not explicitly visible to the observer. The overall light
reflected to the observer from the test surface thus consists of two components. The first
is the normal reflection of the ambient illumination, while the second is generated by the
colorimeter. Varying the intensity of the colorimeter primaries has the perceptual effect of
changing the colour appearance of the test surface. Essentially, we have taken the stimulus
configuration exploited by Gelb (Gelb 1950; see also Katz 1935; Koftka, 1935) and brought
it under computer control (see also Uchikawa et al. 1989; Valberg and Lange-Malecki 1990;
Kuriki and Uchikawa 1996, 1998).

As noted above, asymmetric colour matching provides a convenient and natural experi-
mental method for linking computational theory and human performance. This procedure
is particularly well suited to studying colour constancy when there is a spatial change in the
illumination (simultaneous colour constancy) so that the matches can be made between
two surfaces that are viewed at the same time (e.g. Arend and Reeves 1986; Brainard 1997).
It is also possible to use asymmetric matching to study colour constancy for the situation
of interest here, uniformly illuminated scenes where the illuminant varies from one time to
another (successive colour constancy; Brainard and Wandell 1991, 1992; Bauml 1995; Jin
and Shevell 1996). In this case, however, the matches typically involve a memory component
and are more difficult for observers.

A simpler experimental task is to measure the achromatic locus by having observers
adjust the chromaticity of a surface (or image region) until it appears achromatic (Helson
and Michels 1948: Werner and Walraven 1982; Fairchild and Lennie 1992; Arend 1993;
Bauml 1994; Chichilnisky and Wandell 1996; Maloney and Yang, Chapter 11 this volume).
This task is performed easily and reliably by even the most naive of observers. A direct
comparison of asymmetric matching and achromatic adjustment in a simultaneous colour
constancy experiment indicates that the two tasks tap the performance of the same visual
mechanisms (Speigle and Brainard 1999).

We measured how the achromatic locus depends on changes in illumination. Figure 10.4
shows typical results. Each of the open circles shows the chromaticity of an experi-
mental illuminant. Each of the corresponding closed circles shows the chromaticity of
the achromatic locus, measured for one observer, under the corresponding illuminant. The
achromatic loci were determined by averaging loci determined in separate sessions. The
x and y standard errors of measurement for each locus are smaller than the plotted points.!

U We verified that for our conditions the chromaticity of observers” achromatic adjustments does not depend
on luminance (Brainard 1998). This invariance does not hold in general (Helson and Michels 1948; Werner and
Walraven 1982; Chichilnisky and Wandell 1996; see also Mausfeld and Niederee 1993; Mausteld 1998; Delahunt
and Brainard 2000) but is obeyed for decrements seen against uniform surrounds (Chichilnisky and Wandell
1996).
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Figure 10.4 Basic achromatic results. The figure shows the CIE 1931 chromaticities of the achromatic loci (solid circles)
measured under two experimental illuminants (chromaticity shown by open circles) for one observer. The
between-session standard error of the mean is smaller than the plotted points. The maximum within-session standard
deviation of the individual achromatic settings is indicated by the crosses at the upper left of the figure. (Adopted from
Figure 3 of Brainard 1998.)

The achromatic loci plotted are the chromaticities of the light reflected to the eye that
appeared achromatic (i.e. the chromaticities of the proximal stimulus). To interpret the
data in terms of colour constancy, consider the chromaticity of the light reflected from a
surface that appears white under typical daylight. Such a surface has a reflectance spectrum
that is nearly constant across wavelength, and thus the light reflected from it always has
a chromaticity close to that of the illuminant. Figure 10.5 plots the chromaticity of the
light reflected from a Munsell N 9.5/surface under two illuminants. This surface appears
achromatic when seen under the standard viewing conditions for which the Munsell system
is defined, and for a colour-constant visual system it will continue to appear achromatic
under other viewing conditions. Thus for a colour-constant visual system, the chromaticity
of the achromatic locus should coincide with the chromaticity of the light reflected from
this surface. We conclude that colour constancy is indicated when the chromaticity of the
achromatic loci lies near that of the illuminants (see Fig. 10.5). This pattern is roughly what
is seen in the data shown in Fig. 10.4.

It is possible to go from the data shown in Fig. 10.4 to a constancy index. The calculations
are described in detail elsewhere (Brainard 1998). The index takes on a value of 0 for the
case when the achromatic loci are unaffected by the illuminant (no constancy) and 1 when
the achromatic loci track the illuminant perfectly (complete constancy). For intermediate
cases, the index may be thought of as describing the extent to which the achromatic loci
track the illuminant change. The value of the index for the data shown in Fig. 10.4 is
0.80, and the mean value across a wide range of conditions (different objects in the room,
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Figure 10.5 Data expected for a colour-constant visual system. The figure plots the chromaticity of the light reflected
from a Munsell N 9.5/surface (solid circles) under two illuminants. The chromaticities of the illuminants are indicated

by the open circles.

different illuminant changes) was 0.82 (Brainard 1998). Interestingly, this is more constancy
than is typically seen in studies conducted with monitor displays. (Comparable indices are
generally in the range 0.50-0.60, see Brainard and Wandell 1991; Fairchild and Lennie
1992; Brainard et al. 1993.) The relatively high constancy index shown by observers in our
experiments is consistent with everyday experience: object colours do not change much
with changes in illuminant. We believe that laboratory experiments employing the sort of
nearly natural stimuli described above assess constancy as it operates in the real world.

Testing computational models

The experiment described above quantifies colour constancy across changes of illumina-
tion. It does not, however, tell us much about how the visual system achieves the measured
constancy. In the experiment, the surfaces that make up the scene remain constant as
the illuminant is varied. Such a design, almost ubiquitous in studies of colour constancy,
eliminates from the stimulus ensemble the illuminant—surface ambiguity, described in the
introduction, which makes constancy a difficult computational task. Indeed, most compu-
tational theories can predict good constancy under circumstances where the same collection
of surfaces is viewed under an unknown illuminant. To test these theories it 1s necessary to
conduct experiments where both the surfaces in the scene and the illuminants are varied.
To do so, we (Kraft and Brainard 1999) had observers look into a small (approximately
1 m x 1 m) chamber in which the spectrum of the illuminant and the spectral reflectance
of all visible surfaces could be controlled independently. Figure 10.6 shows images of the
chamber in two different configurations. Between the two, some of the objects in the cham-
ber were changed, so that the mean surface reflectance (s) in the scene is quite different in the



COLOUR CONSTANCY: DEVELOPING EMPIRICAL TESTS 319

Figure 10.6 Pictures of the experimental chamber when the spectral average has been equated. This plate shows pictures
of the experimental chamber used by Kraft and Brainard (1999). Across the two images, both the illuminant and the
surfaces in the scene have been changed. The two changes have a reciprocal effect, so that the spatial average of the L, M,
and 5 cone quantal absorption rates 1s the same 1n both images. The images shown are rendered versions ol
hvperspectral images taken of the stimuli. The hyperspectral imaging system (Longére and Bramnard 2001) provided 31
narrow-band (approximately 10 nm bandwidth at 10 nm spacing between 400 and 700 nm) images of the scene. The
hvperspectral images were also used to determine the spatial average of the cone quantal absorption rates. (Adopted
from Figure 1 of Kraft and Brainard 1999.) (See colour Plate 29 in the centre of this book.)

two cases. In addition, the illumination in the two chambers 1s also different. The combined
effect of the surface and illuminant manipulations is to make the spatial mean of the two
images (r) identical. As with the experiments in the full room, the appearance of a test patch
in the chamber could be adjusted through the use of the projection colorimeter. The obser-
vers' task was again to adjust the chromaticity of the test patch until it appeared achromatic.

The prediction of Buchsbaum’s algorithm for our experimental situation is
straightforward. Given that the spatial average of the two images is the same, the match-
prediction hypothesis says that when two test patches seen in the respective images match
in appearance, the light reflected to the eye should be the same. Achromatic adjustments
do not establish complete perceptual matches. But it 1s plausible that each point on the
achromatic locus measured in one image matches some point on the achromatic locus
measured in the other image. Given that we find that the chromaticity of light that appears
achromatic is independent of test luminance (see Footnote 1), we arrive at the prediction
that the achromatic locus should have the same chromaticity when measured in the two
images.

Figure 10.7 plots the achromatic loci measured for one observer in this experiment.
The achromatic loci are significantly different from each other, as they were for three other
observers (keep in mind that the standard errors tor the achromatic loci are smaller than the
plotted points; see Kraft and Brainard 1999). From this fact, we can conclude directly that
the spatial average of the image is not the only statistic governing colour appearance. This,



320 COLOUR PERCEPTION

e Achromatic
o lluminant

Observer DHB

2

k&

©

=

o

-

A

o

.

Lu ot
O )

CIE x chromaticity

Figure 10.7 Achromatic settings with spatial average equated. The format of the figure is the same as for Fig. 10.4. Here
the achromatic settings were made in the context of two images where the illuminant differed (open circles) but the
spatial average of the image was held constant. The between-session standard error of the mean is smaller than the

plotted points. (Data are replotted from Figure 2 of Kraft and Brainard 1999.)

in turn, says that Buchsbaum’s algorithm cannot completely describe human performance.
Perhaps it is worth noting that this result does not rule out the possibility that the algorithm
would describe performance if the stimuli conformed strictly to the assumptions of the
Mondrian World.

The constancy index for the data shown in Fig. 10.7 is 0.29. The mean index for four
observers in the same experiment was 0.39. These indices are considerably lower than the
value of 0.82 found for the experiments conducted in the full room. The reduction 1s not
due to the fact that observers were looking into a chamber rather than sitting in an entire
room: control experiments with the chamber, where only the illuminant was varied, yielded
constancy indices of about 0.83.

Discussion

In this chapter we have emphasized the link between computational theories of colour con-
stancy and human performance. In doing so, we have implicitly endorsed what Maloney
refers to as the illumination estimation hypothesis (Maloney and Yang, Chapter 11 this
volume). This is the idea, central to the motivation here, that the visual system estimates
the illuminant and that the estimate is used to govern the perception of surface colour (see
also Speigle and Brainard 1996; Brainard et al. 1997; Mausfeld 1998; Gilchrist et al. 1999).
The work reviewed here does not directly test the illuminant estimation hypothesis, since
observers do not make any judgements of perceived illumination. Recent work (Rutherford
2000) suggests that the illuminant estimation hypothesis is at best an approximation (see
also Beck 1959, 1961; Ovama 1968; Kozaki and Noguchi 1976; Noguchi and Kozaki 1985;
Logvinenko and Menshikova 1994). Even if human surface colour appearance does not
depend on an explicit illuminant estimate, we need not refrain from using computational
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theory to develop and test models of which image statistics influence the perception of
surface colour. Indeed, the models we have elaborated are designed to make predictions
about asymmetric surface colour matches (or closely related measures of appearance).
In this sense, they are agnostic about whether the visual system computes an estim-
ate of illuminant or whether such an estimate plays a governing role in surface colour
perception.

Our experimental logic can be used to show that a particular theory does not provide
a complete description of human performance. In the case of Buchsbaum’s algorithm, we
learn that something other than the spatial average of the cone responses in the image
contributes to how the visual system processes colour information.”? The experiments do
not, however, rule out a role for the spatial average. Indeed, the fact that the constancy index
is greatly reduced when the spatial average is held constant suggests that this statistic may
play an important role in colour perception. A more definitive statement is not possible
based on our experiments, since by silencing the spatial average we also affected other
image statistics. Yang and Maloney (Yang 1999; Maloney and Yang, Chapter 11 this volume)
have recently taken an empirical approach complementary to ours, where they make small
perturbations to one image statistic while holding others constant. Experiments of this sort
can be used to establish that particular statistics are used by the visual system.

A crucial feature of our experimental design is that we manipulate both the illuminant
and surfaces in the scene. Without doing so, we could not match the spatial average in the
image while at the same time changing the illuminant. This is a point of wide applicability.
Most computational theories derive their estimate of the illuminant from specific scene
statistics. To test whether a particular theory provides a complete description of human
performance, we can proceed by silencing the statistics used by that algorithm. To do soin a
non-trivial manner, it is necessary to vary both the surfaces in the scene and the illuminant.
To date, only a few other experimentalists have explored conditions where both the surfaces
and illuminants varied (Gilchrist and Jacobsen 1984; McCann 1994; Kuriki and Uchikawa
1998; see also Gilchrist 1988). It is our opinion that further experiments where only the
illuminant is varied are unlikely to advance our knowledge of constancy much beyond its
current state. More experiments are needed where the essential ambiguity between surfaces
and illuminants is restored to the experimental situation.

In addition to conducting the experiment described above, where the spatial average of
the image was held constant across a change of illuminant, we have measured achromatic
loci in a variety of other images where surfaces in the scene were varied across an illuminant

> We should note that theories that postulate that the spatial average is the statistic that sets the visual system’s
effective estimate of the illuminant vary in terms of exactly how the average is computed. In our experiment,
we matched the spatial average taken over image pixels, equally weighted. One can consider variants that weight
distinct image regions identically (e.g. Gershon and Jepson 1989), that take a spatially weighted average for each
local image region (e.g. Land 1986; see Brainard and Wandell 1986}, and that use the geometric rather than the
arithmatic average of the L-, M-, and S-cone responses (again Brainard and Wandell 1986; Land 1986). Strictly
speaking, additional experiments would be needed to rule out all of these variants for the class of rich stimulus
configurations we used. There are, however, a growing number of results for simpler laboratory images that make
it difficult to adhere to any of these variants (Singer and D'Zmura 1994; Jenness and Shevell 1995; Brown and
MacLeod 1997).
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change. We will not review the particulars of these manipulations here; most are described in
Kraft and Brainard (1999). Across the conditions we studied, constancy indices (mean across
observers) varied considerably, ranging from 0.06 to 0.83. The lowest indices corresponded
to spatially simple scenes where the surfaces were changed to reduce information about
the illuminant change. The highest indices were obtained when the surfaces in the scene
were held constant across an illuminant change. The variation of constancy index with
experimental conditions emphasizes the fact that how well the visual system adjusts to a
change of illuminant depends on the stimulus ensemble: when little information is available
about the illuminant change, the visual system is not very colour constant.

We find it encouraging that we have found stimulus manipulations that cause the con-
stancy indices to vary widely. This indicates that we have brought into the laboratory a
set of factors that operate in rich images and that have a substantial impact on human
performance. Identifying these factors more precisely and bringing them under parametric
control should allow more systematic investigation of how colour appearance is governed
in complex natural scenes.

Although our stimuli consisted of real illuminated three-dimensional objects, we did
not manipulate the spatial structure of the scenes. The spatial structure (either actual or
perceived) of a scene can affect colour appearance even when the colour statistics of the
image are held fixed (Gilchrist 1977, 1980; Knill and Kersten 1991; Bloj et al. 1999). Such
effects are not captured by the experiments and models described here. It is possible that
for our stimulus configurations, the visual system takes advantages of cues such as specular
highlights (Lee 1986; D’Zmura and Lennie 1986; Tominaga and Wandell 1989; see Yang
1999; Maloney and Yang, Chapter 11 this volume) and mutual illumination (Funt et al.
1991; Funt and Drew 1993; see Bloj et al. 1999). Whether this is the case, or whether for our
scenes the colour statistics alone provide most of the information used by the visual system,
is an interesting and open question.

Another simplified aspect of our scenes is that the illumination was close to spatially
uniform. Thus the task of segmenting the image according to different illuminants has a
particularly simple solution for our images. How such segmentation operates in images
with multiple illuminants (simultaneous constancy) remains a central unsolved problem
that is not addressed by our work. Recent theories (Adelson 1999; Gilchrist et al. 1999) have
identified a number of heuristics that might guide the segmentation process. These theories
also suggest that once the image has been segmented into separate regions, visual processing
within regions is guided by the colour statistics or some summary of them. Our work focuses
on exactly how the image statistics are used within uniformly illuminated regions. Within
the context of these recent theories, our work is complementary to explorations of how the
segmentation processes operate.

[t may be possible to quantify the relation between human performance and the informa-
tion about the illuminant change that is actually available in a pair of images. Up to this
point, we have considered computational theories as potential models for human perform-
ance. But computational models can also be used to provide a benchmark against which to
compare human performance. This sort of analysis has been very successful in understand-
ing data obtained from experiments that measure performance on objective psychophysical
tasks such as detection and discrimination (e.g. Green and Swets 1966; Geisler 1989). In
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Figure 10.8 Comparison of human performance with Bayesian algorithm. The figure plots the constancy indices
obtained for human observers against constancy indices obtained for the Bayesian algorithm of Brainard and Freeman
(1997). The algorithm was run using points selected at random from calibrated LMS images of the stimulus. The image
acquisition procedure 1s described in the caption for Fig. 10.6. The prior distribution for illuminants was constructed to
match the range of illuminants that our apparatus could produce. The prior distribution of surfaces was obtained by
analysing measurements of Munsell papers, as described in Brainard and Freeman (1997). The small negative constancy
indices obtained in some cases occur because the illuminant estimate shifts slightly in a direction opposite to the actual

illuminant change.

such applications, one predicts the performance of an ideal observer that uses all of the
information in the stimulus optimally to perform some task. An ideal observer benchmark
provides a principled method for evaluating how efficiently a real observer performs a
particular task, and thus to identify sites of information loss in visual processing.

Brainard and Freeman (1997) used Bayesian decision theory to develop an ideal observer
for colour constancy in the Mondrian World. Their work assumes that in any scene, the
surface and illuminant spectra are drawn at random from a population whose distribution
1s known. When the prior assumptions are met, the algorithm returns an estimate of the
illuminant that is optimal, in the sense that it minimizes the expected illuminant estimation
error.’

The Brainard and Freeman algorithm may be applied to each image for which Kraft
and Brainard (1999) measured achromatic loci. We can compute a constancy index for the
algorithm by treating the chromaticity of its illuminant estimates in the same way that we
treat the achromatic loci measured for human observers. Figure 10.8 shows the constancy
indices obtained for human observers plotted against the constancy indices obtained for the
Bayesian algorithm. What is apparent in the plot is that there is a strong correlation between

the human and Bayesian indices. If we take the performance of the Bayesian algorithm as

* See Brainard and Freeman (1997) for a detailed description of exactly what error is minimized.
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a measure of how much information is available for an ideal observer to estimate the
illuminant, we see that the variation in human performance across the conditions is well
explained by information differences between the various conditions. The slope of the
regression line between the human and Bayes indices is 0.77. This could be taken as a
measure of the degree of human constancy, relative to ideal performance, across the whole
set of image manipulations.

We do not wish to claim that the Brainard and Freeman (1997) algorithm provides a
good model of human performance, even for stimulus configurations where the colour
statistics alone drive the visual system’s estimate of the illuminant. A strong test of the
particular algorithm requires that we apply the same logic as we developed earlier in the
chapter: find two images for which the algorithm predicts the same illuminant estimate and
then measure colour appearance for these two images. Doing so will require development
of more sophisticated stimulus control techniques than we currently have at our disposal.
The algorithm does, however, measure the information available from the colour statistics
about the illumination change across a pair of images. It is therefore intriguing that the
algorithm is able to make accurate predictions of how human performance varies across a
wide range of experimental conditions.
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Commentaries on Brainard, Kraft, and Longere

Surface colour perception and its environments

Laurence T. Maloney

The chapter by Brainard and colleagues begins with a brief summary of the computational literature
on colour constancy and ends with a partial summary of the elegant and important experimental work
on colour perception undertaken by Brainard and his colleagues over the past decade. The intent of
the chapter is not simply to juxtapose model and experiment, but to emphasize the importance of the
interplay between experimentation and theory in colour science, and it fulfils its intention very well.

In comparison with many other subdivisions of visual perception, colour science is in particular
need of theory. There are (at least) two reasons why this is so. First of all, when we study how well
human observers judge properties of the environment, including shape, or depth, and separation
(length), we usually know, or can determine, the correct answer to any question that we pose to the
observer. Put a bit more formally, we have agreed-upon measurement procedures that allow us to
determine which of two lengths is longer, or which of two objects is further away (e.g. a ruler). We
do not expect to disagree with other observers concerning judgements of length (Asch 1956) and we
readily resolve differences between what we see and what we measure in favour of the measurements,
explaining the discrepancy as due to a visual illusion (Coren and Girgus 1978). In such studies, theory
still plays a role, and an important one, but its role is primarily to explain the patterns of deviation
from what our measurement procedures tell us is ‘ground truth’

For colour perception, we typically don’t know what counts as the right answer. We don’t have
measuring devices to tell us the (true) colour of an object; some researchers (e.g. Brown, Chapter 8
this volume) even reject the possibility that we could ever identify measurable, physical properties of
objects that correspond to the subjective experience of colour. Consequently, the study of colour is
typically framed in terms of invariances or constancies: the experimenter doesn’t know what colour a
homogeneous object ‘should’ be, but has the intuition that whatever it might be, it should remain the
same under changes of illumination in the scene. If we were challenged to justify the claim that colour
1s invariant under a scene transformation, we could not do so. We would reply to the same challenge
in the case of length by simply verifying that measured length remained invariant under the specified
transformation.

It is interesting, then, that many of the computational theories of colour constancy that Brainard
and colleagues mention begin with explicit models of light—surface interaction that include parametric
descriptions of surface spectral reflectance functions. The ensuing colour constancy algorithm is a
recipe for estimating these parametric surface descriptors, wholly or in part. These descriptors are, of
course, measurable properties of the hypothetical surfaces postulated within the framework of each
model, and the analogue of colour perception for these models is the explicit estimation of properties
of surface in the environment. While such estimation theories noisily compete to describe human
colour judgements, they quietly agree that colour is the subjective correlate of unspecified physical
properties of surfaces (for a review, see Maloney 1999).

The first contribution of theory to the study of colour perception, then, is development of explicit
models of what might count as the physical properties corresponding to colour. Implicit in the
structure of such a theory is a claim that there is no fundamental difference between colour, on the
one hand, and length or shape, on the other. We are simply less familiar with the rules governing
colour in our world. If we eventually conclude that no estimation theory is an adequate description
of human colour perception, then we will likely gain insight into the radical difference between
perceptual attributes, such as length, that have agreed upon measurement procedure, and perceptual
attributes, such as colour, that do not.

The study of colour vision is in need of theory for a second reason. The geometric structure of the
environment around us is extremely well described as a Euclidean geometry, inside the laboratory
and out. Three numbers characterize a location, and relations such as collinearity, orthogonality,
parallelism, and so on are so well mirrored by ordinary geometry that we can pass from computational
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description to physical measurement and back with confidence. In contrast, we know of no accurate
parametric descriptions of lights and surfaces in the natural environment that require as few as three
parameters to characterize a light, and three parameters to characterize a surface. That is not to say that
there are not models of lights and of surfaces that provide excellent approximations (Maloney 1999),
but that a critical observer will likely be able to detect the difference between a natural environment
and an approximation based on whatever three-parameter models of lights and surfaces. Further, the
computational theories we have so far require that descriptions of light and surface use no more than
three free parameters (Maloney 1999: MacLeod and Golz, Chapter 7 this volume). Consequently,
the models are designed to operate in abstractions or idealizations of the natural environment that a
human observer can discriminate from the natural environment, at least under some circumstances.
[ term these abstractions environments (Maloney, Chapter 9 this volume).

If we wish to test such a theory as a model of human performance, we can usefully divide our
task into two. First, we examine the human observer’s performance when placed in the idealized
environment assumed by the theory. Typically, the prediction is that the observer will have perfect
colour constancy across the range allowed by the environment. The model of MacLeod and Golz
(Chapter 7 this volume) is an exception, in that it predicts failures of lightness constancy even within
its environment. Then we can examine the behaviour of the model outside of its environment and
compare the performance of the observer to the same altered environment.

The key in both cases is to simulate accurately an environment composed of idealizations of
lights and surfaces specified mathematically. This sort of experiment is described in Maloney and
Yang (Chapter 11 this volume). I argue that this approach is the correct way to test the kinds of
computational models that have been developed in the past two decades.

In conclusion, then, our lack of understanding of the physics of light—surface interaction in the
environment requires a tighter link between theory and experiment than in other areas of perception.

While Brainard and colleagues would likely agree with this general conclusion, they have taken
a different tack in dealing with the uncertainty surrounding the proper environment for the study
of human colour perception. They have developed a series of carefully controlled three-dimensional
environments that they refer to as ‘nearly natural’ These approximations, constructed of known
surface materials and illuminants, allow them to measure human colour constancy performance
under something like natural viewing conditions. Since the idealized environments accompanying
computational models of colour constancy are invariably intended as approximations of the natural
environment, the nearly natural environment cannot be too far away from their normal ‘operating
range. As Brainard and colleagues note, the very high degree of colour constancy they find under
some experimental conditions, and the very low colour constancy they find under others, is a strong
indication that they have built an environment appropriate for the study of surface colour perception.

And yet [ would argue that the future belongs to accurate simulations of arbitrary ‘unnatural’
environments, environments chosen to match the assumptions of a particular theory under test. The
technology needed to do this sort of experiment is complex: it includes high-intensity binocular
display devices with a wide spectral gamut, as well as accurate computer graphics, rendering software
for simulating light—surface interactions in complex, three-dimensional scenes. Once this sort of
equipment 1s readily available, it should be possible to explore the match between human colour
performance and computational theories systematically.
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Commentaries on Brainard, Kraft, and Longere

Comparing the behaviour of machine vision algorithms and human observers

Vebjorn Ekroll and Jiirgen Golz

The indefiniteness in the concept of colour lies, above all, in the indefiniteness of the
concept of the sameness of colours, i.e. of the method of comparing colours,

Wittgenstein (1977)

The inner coherence of the previously published work of Brainard and his research associates! makes
it tempting to speak of a concentrated research effort which seems to be less well defined by basic
assumptions than by its dedication to tracking them down, being explicit about them, and subjecting
them to empirical test. Their present contribution is no exception in this regard. In this case Brainard
and colleagues isolate an assumption which is implicit to a large body of research on colour constancy,
formalize it, and discuss its implications.

Although this is not always recognized, interdisciplinary cross-talk between psychologists and
psychophysicists, on the one hand, and computer vision scientists and physicists, on the other, is not
only impeded by the fact that we speak different academic languages, but also by the fact that these
disciplines are not separate due to mere historical chance. They are separate mainly because they have
different realms of phenomena as their subject, and any vaguely promising attempt to bridge the gap
between them is worthy of our attention.

The match-linking proposition hypothesis proposed by Brainard and colleagues represents a concep-
tual clarification which eases the comparison of the predictions of colour constancy algorithms and
human performance. Interesting implications of this linking proposition are deduced in an elegant
and conclusive manner, and it is clear that the linking proposition makes a large number of interesting
theoretical questions accessible to empirical investigation. The much commendable explicitness of
the analysis by Brainard and colleagues also makes it a very interesting target for critical discussion.

Due to the important implications of the match-linking proposition hypothesis, it should be con-
sidered carefully whether the assumptions upon which it is based can be regarded as correct in any
given experimental situation.

The basis for the linking proposition of Brainard et al. (see p. 314) is the assumption that there
exists a function f() which relates estimated surface reflectances s—algorithm output—to perceived
colours, o. This ensures that if the estimated surface reflectances s(A) and s(B) corresponding to
two surfaces A and B are equal, their perceived colours o(A) and o (B) must also be equal. (The
assumption that the function f() is one-to-one ascertains that the converse is also true.) It is assumed
implicitly that the perceived colours, o, which are the basis for human matching behaviour, are the
appropriate counterparts to estimated surface reflectances s. This implicit assumption seems to be a
very plausible one, but it is by no means ascertained that it is correct. And if it is not, application
of the match-linking proposition hypothesis may lead to erroneous or misleading conclusions, as will
become clear in the following example.

A priori, 1t 18 not clear whether a colour match between two patches made by a human observer
was made on the basis of perceived surface colour or some other variable. An obvious alternative is
unasserted colour, a term introduced by Arend (1994) and defined as the chromatic counterpart of
brightness, that 1s, an aspect of perceived colour which is presumed to be more elementary and prior
to any parsing into surface and illumination performed by the visual system. In order to ascertain that
subjects actually base their matches on perceived surface colour, and not on any other aspects which
are not intended in investigations of colour constancy, they may be appropriately instructed. This is
known to have a substantial effect on the matches made (Arend 1994). However, even when clear

' Among the more recent work: Brainard et al. (1997); Brainard (1998); Kraft and Brainard (1999); Speigle
and Brainard (1999); Delahunt and Brainard (2000); Kraft et al. (2002); Rutherford and Brainard (2002).
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instructions are given, asymmetric colour matches are difficult to make. The subjective difficulties
assoclated with making asymmetric colour matches are well known (Katz 1911; Gelb 1929; Whittle
1994a,b), although it is less well understood why they appear. An immediately plausible explanation
would be that these difficulties are due to the subjective uncertainties which may be associated with
the comparably impoverished and artificial stimuli which are typically employed in such experiments
(see p. 315).

As Brainard et al. note, there are many good reasons for studying more natural images than the
typical cathode ray tube (CRT) displays. The subjective difficulty of making asymmetric matches
gives a further good reason; if the subjective matching problems are due to the artificiality of the
stimulus, they ought to disappear when more realistic stimuli are used, since they would be more
likely to trigger a unique perceptual parsing into illumination and surface reflectance components.
Interestingly, this is not the case, as is clear from the comments made by Brainard et al. (1997) in their
study using a nearly naturalistic stimulus set-up. They state: “The observers were able to set reliably
what they regarded as the best match. At this match point, however, the test and the match surfaces
looked different, and the observers felt as if further adjustments of the match surface should produce
a better correspondence. Yet turning any of the knobs or combinations of knobs only increased
the perceptual difference. We verified that the observers” adjustments near the best match were not
limited by the gamut of our apparatus.” They suggest the following explanation for this phenomenon:
‘One intriguing possibility is that our color experience at a location is described by more than three
variables. This is possible if the influence of the illuminant (or, more generally, of the viewing context)
has the effect of changing the perceptual representation of color in a way that cannot be compensated
for simply by varying the tristimulus coordinates at a single location. Such an effect might be expected
if the visual system uses color to code both surface and illuminant identity.

This interpretation is supported by a recent analysis made by Niederée (1998), in which it is
deduced from standard assumptions that a perceptually complete colour code for stimuli as simple
as infield-surround configurations must be at least four-dimensional. If the visual system ‘uses color
to code both surface and illuminant identity’ the function f( ) relating algorithm output to perceived
colour would probably be more appropriately assumed to depend on both the estimated surface
reflectance § and the estimated illumination i, thus challenging the rationale for the match-linking
proposition hypothesis. In this case, equal estimated surface reflectances obviously do not imply equal
perceived colours.

The subjective matching problem and the presumably related fact that the perceived colour cannot
be adequately represented by a three-dimensional colour code, even in simple stimulus configurations
(Katz 1911; Evans 1949, 1964, 1974; Niederée 1998; see also Ekroll et al. 2002a,b, for a related
phenomenon), should be taken seriously, not only as interesting phenomena in their own right, but
also because our failure to understand them deprives us of a fuller understanding of results from the
very promising research programme suggested and pursued by Brainard et al.

A preliminary strategy that could contribute to our understanding of these phenomena would be
to investigate under which experimental conditions the subjective matching problems are particularly
prominent, and under which conditions they are less prominent or even absent, as suggested by Bauml
(1999). It is, for instance, interesting to note that they have been reported to be absent in experiments
with haploscopically superimposed displays (Whittle 19944, b). However, it also seems imperative to
develop ideas about which functional role the higher dimensionality of perceived colour might play.
Some ideas about this can be found in Mausfeld (Chapter 13 this volume) and Niederée (1998).

Although we have focused on a problematic aspect of the match-linking hypothesis proposed by
Brainard and colleagues, there is every reason to pay close attention to their research. The explicitness
and empirical rigour of the approach is, in our opinion, bound to enhance our understanding of
colour perception one way or another. An aspect of Brainard and colleagues’ research which we have
not addressed, but are particularly enthusiastic about, is the study of more naturalistic scenes under
laboratory conditions. This line of research is likely to further our understanding of colour perception
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for several reasons, some of them mentioned by the authors themselves. A simple point demonstrating
the value of this research is that, as far as results from artificial displays and naturalistic scenes differ,
this discrepancy may draw our attention to factors and cues influencing colour perception which have
been overlooked by present theory (Kraft et al. 2002; Logvinenko et al. 2002). And, as already noted,
the experimental study of naturalistic displays will ultimately show whether problems and phenomena
often attributed to the artificiality of the experimental stimulus may be discarded as such, or rather
reflect problems of our theoretical concepts. Of course, naturalness of stimuli does not imply that
the tasks subjects are asked to perform (e.g. asymmetric matching), and which seem natural on the
basis of our—potentially misleading—theoretical preconceptions about what the visual system does
or aims to do (e.g. estimate reflectances), are in fact natural with respect to the internal structure of
the visual system (cf. Mausfeld, Chapter 13 this volume).
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Plate 28 Renderings of two surfaces under two illuminants. The top row shows the same surface rendered under two
different illuminants. Each rendering was obtained using an illuminant spectral power distribution and surface
reflectance function to compute the spectrum of the colour signal. From this the Smith—Pokorny estimates (Smith and
Pokorny 1975; DeMarco ef al. 1992) of the L, M and S cone spectral sensitivities were used to obtain the quantal
absorption rates of each cone class in response to the colour signal. These, in turn, were used, together with typical red,
green, and blue phosphor emission spectra and monitor gamma curves, to compute RGB coordinates for the rendering.
The RGB coordinates were chosen using standard methods (e.g. Brainard 1995) so that the light they cause to be emitted
from the monitor has the same effect on the cones as the colour signal being rendered. The RGB coordinates were used
to produce the figure by methods outside of the authors” control. The spectral plots show the surface reflectance
functions and illuminant spectral power distributions used for this example (See Fig. 10.2.)

Plate 29 Pictures of the experimental chamber when the spectral average has been equated. This plate shows pictures of
the experimental chamber used by Kraft and Brainard (1999). Across the two images, both the illuminant and the
surfaces in the scene have been changed. The two changes have a reciprocal effect, so that the spatial average of the L, M,
and S cone quantal absorption rates is the same in both images. The images shown are rendered versions of
hyperspectral images taken of the stimuli. The hyperspectral imaging system (Longere and Brainard 2001) provided 31
narrow-band (approximately 10 nm bandwidth at 10 nm spacing between 400 and 700 nm) images of the scene. The
hyperspectral images were also used to determine the spatial average of the cone quantal absorption rates. (Adopted
from Figure 1 of Kraft and Brainard 1999.) (Sece Fig. 10.6.)



