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ABSTRACT
Pain assessment is vital for effective pain management in clinical
settings. It is generally obtained via patient’s self-report or ob-
server’s assessment. Both of these approaches suffer from several
drawbacks such as unavailability of self-report, idiosyncratic use
and observer bias. This work aims at developing automated ma-
chine learning based approaches for estimating pain in clinical set-
tings. We propose to use facial expression information to accom-
plish current goals since previous studies have demonstrated con-
sistency between facial behavior and experienced pain. Moreover,
with recent advances in computer vision it is possible to design al-
gorithms for identifying spontaneous expressions such as pain in
more naturalistic conditions.

Our focus is towards designing robust computer vision models
for estimating pain in videos containing patient’s facial behavior.
In this regard we discuss different research problem, technical ap-
proaches and challenges that needs to be addressed. In this work
we particularly highlight the problem of predicting self-report mea-
sures of pain intensity since this problem is not only more chal-
lenging but also received less attention. We also discuss our ef-
forts towards collecting an in-situ pediatric pain dataset for validat-
ing these approaches. We conclude the paper by presenting some
results on both UNBC Mc-Master Pain dataset and pediatric pain
dataset.
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1. INTRODUCTION
Pain is an unpleasant yet necessary signal that warns us of ac-

tual or impending bodily damage, and allows an individual to take
action [8]. In clinical settings, this action could translate to pa-
tient diagnosis, medications or even a surgical procedure. Thus
measurement of pain is imperative for effective treatment. Despite
its significance, clinical pain is often misunderstood and underesti-
mated, which makes its management difficult [8, 21, 24, 7]. It was
also highlighted in a recent survey that pain management in chil-
dren demands more attention due to lack of evidence based studies
and also since ineffective pain management in children can lead to
long-term undesirable effects [7].

Estimates of pain intensity are commonly obtained in clinical
settings via self-report and behavioral measures [25, 22, 23]. The
self-report measure allows an individual to verbally communicate
the amount of experienced pain and suffers from several drawbacks
such as subjective bias and patient idiosyncrasies. Moreover, it can-
not be employed by verbally impaired patients. On the other hand,
observational measures are based on inspecting non-verbal clues
(such as the face, body or voice of an individual) related to pain for
reporting pain intensity. Such measures are disrupted by the pres-
ence of observer’s bias, considerable demands on clinicians time,
and the influence of factors such as likability of patient [10], under-
estimation of pain [17]. Since pain is inherently a subjective and
internal experience, self-report measures are preferred over others
and considered the gold-standard for conveying pain intensity [23,
28, 6].

The field of facial expression analysis has recently seen signif-
icant progress due to advancements in machine vision. Several
studies have shown that facial behavior can be used as a modal-
ity for predicting internal states such as mood, confusion, [13, 3].
Case studies on understanding pain have also established relation-
ship between facial behavior and experienced pain. In particular
the Facial Action Coding System (FACS) has been shown to pro-
vide objective indicators of facial expressions that are correlated
with self-report measures of pain [17, 6]. Other works have also
explored approaches for facial expression analysis that do not re-
quire FACS coding. These methods employed discriminative fea-
tures such as Local Binary Patterns (LBP), Bag of Words (BoW),
Active Appearance Model (AAM), for representing facial behavior
[20, 16, 27].

Our work is focused towards developing an automated system
for predicting pain. We propose to use facial expression informa-
tion to objectify the process of both detecting and measuring pain
intensity in clinical settings. Since pain is a complex signal such
a system should be able to capture both the appearance variation
and temporal dynamics of pain expression. This system will be
evaluated on the task of predicting both postoperative ongoing pain
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and experimentally induced acute pain. Since appropriate datasets
are required to validate computer vision algorithms for prediction
pain, we are also collecting an in-the wild clinical dataset that could
be used to validate the posed research question. Such automated
methods for measuring pain intensity could be used to aid clinical
staff in long-term patient monitoring. Moreover, machine observers
could be used to alert clinicians to instances of pain and thus free
up resources for more efficient allocation of clinical attention. Such
systems are also useful in cases where verbal self-report ratings are
not available.

2. RELATED WORK
Over the years there have been significant research efforts to-

wards automatic facial expression analysis (AFEA). This progress
has been fueled by improvements in fields such as computer vi-
sion and by the availability of research datasets such as Extended
Cohn-Kanade (CK+) and UNBC Pain dataset [14, 15]. Initially the
field focused on analyzing posed facial expressions, obtained un-
der controlled laboratory settings, where subjects were instructed
to perform certain expressions. The AFEA research is now shifting
towards spontaneous expressions that differ from posed facial ex-
pression in a number of ways and are inherently challenging owing
to head-motion, low-intensity expressions and temporal variations
[3]. Since pain expression is spontaneous in nature, designing algo-
rithms to recognize and quantify pain expression is a step forward
in the research on AFEA.

A significant contribution towards research on spontaneous pain
expression was the public release of UNBC-McMaster Pain dataset
[15]. This dataset contains video sequences of subjects experienc-
ing shoulder pain. They were asked to perform a series of active
and passive movements of their affected and unaffected shoulders
while being videotaped with a front-facing camera. Each sequence
was annotated with several labels: (1) patient self-report, and (2)
expert observers rating referred to as Observer Pain Index (OPI).
The dataset also included FACS code for certain AUs for each
frame. The first computer vision work on this dataset was to de-
sign a system to predict pain/no-pain for each sequence [2] and
use the binarized observer ratings observers ratings (OPI) as the
ground-truth. Their approach began by first extracting AAM based
features from each frame. The AAM features from each video were
then clustered and a video was represented by these cluster centers.
This was followed by assigning the label of the video to each clus-
tered frame and using the data was used to train a Support Vector
Machine (SVM). During prediction the SVM classifier was used to
assign a score to each test-frame. A video was classified as pain
if the average score of its member frames was above a threshold.
Lucey et al. [16] showed improvement on this work by compress-
ing the AAM-based features using a Discrete Cosine Transform
(DCT) instead of clustering them. Sikka et al. [20] later proposed
multiple segment representation in combination with weakly su-
pervised learning to address the inherent drawbacks in these ap-
proaches. Weakly supervised learning addressed the problem of
label-level ambiguity introduced by assigning each frame the label
of the sequence. Multiple segment representation was used to add
temporal information in the decision process and also to handle the
ambiguity in the location and duration of pain signal in a sequence.
Their work showed significant improvement in performance over
previous approaches.

Another problem addressed via this dataset involves continuous
per-frame pain intensity estimation. The ground-truth employed for
this task is the Prkachin and Solomon pain intensity index (PSPI)
that combines intensities of four pain-related AUs and returns a
pain intensity score between 0 − 16. Kaltwang et al. [9] trained

multiple regression models using relevance vector machines for
shape and appearance based features. The outputs from these mod-
els were later combined to obtain a continuous estimate of pain
intensity. Later Rudovic et al. [18] proposed a model based on
Conditional Ordinal Random Fields to incorporate the ordinal na-
ture of pain intensities and their temporal dynamics.

These studies focused on either predicting binary observer’s rat-
ings or anatomically defined pain intensity ratings such as PSPI.
None of these studies targeted the problem of predicting self-report
measures of pain intensity. This could be because alternate pain
ratings seem to be more objective and have less subjective bias rel-
ative to self-report ratings. Moreover designing accurate machine
learning based approaches for making continuous estimates of self-
report measures, in clinical settings, requires a massive amount of
data, which might be difficult to obtain. As discussed in the In-
troduction Section, however, self-report ratings are considered to
be the primary source of information in clinics; this work places a
special attention to the problem of predicting self-report measures.

2.1 METHODOLOGY
In this section we have discussed the data collection procedure,

proposed approach and related technical challenges.

2.2 Data Collection
Data are being collected in collaboration with Rady ChildrenâĂŹs

Hospital, San Diego, California. The participants for this study
were children, aged between 5 and 18, who had undergone an ap-
pendectomy within the past 24 hours. The participants were se-
lected without any history of medication in past six months and
without any mental disorder.

Videos of study participants are recorded while they lay in an up-
right position on the hospital bed. Although care is taken to obtain
the face video in frontal position, we observe significant out-of-
plane head rotations. In order to collect pain behavior at differ-
ent intensities, we record video samples at different times after the
surgery. Samples for both ongoing pain (five minute rest period)
and experimentally induced acute pain are collected. At the end of
each pain period, the children are asked to provide pain ratings by
pointing out a number between 0 − 10 on the Numerical Rating
Scale. Several studies have validated the use of NRS for recording
children’s self-report measures of pain intensity. We also obtain
observer or proxy ratings from parents and nurses using the NRS.
Both of them are asked to look at the participant and point out to a
number on the NRS that corresponds to maximum severity of pain
experienced by the children. Children’s ratings were not available
to the proxy participants.

We shall refer to this dataset as pediatric pain dataset. The data
is currently being collected and a manuscript highlighting the data-
collection procedure, population demographics and statistics will
be released soon. As mentioned earlier collecting relevant data
is one of the major challenges involved in this project. The data
should not only adhere to certain guidelines but also represent the
variability in input-output space for learning accurate models.

2.3 Automatic Facial Expression Analysis
AFEA approaches can be categorized into static, space-time and

sequential approaches. A very similar taxonomy was also em-
ployed for classifying human action recognition in videos [1]. Static
approaches work by first extracting static features such as LBP or
Gabor in individual images (or video frames). This is followed by
either a temporal pooling strategy or feature extraction from the
apex frame in order to obtain a vector representation. Finally a
ML classifier such as SVM is used for the AFEA task. Although
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these approaches happen to be the starting point for any AFEA sys-
tem, they are not suited for spontaneous expressions since they fail
to incorporate temporal information into the decision process. On
the other hand, space-time approaches extract features by treating
a video as a XYT volume, such as LBPTOP or spatio-temporal
gabor [26]. Although these approaches perform better than static
approaches, they still do not explicitly encode temporal informa-
tion leading to performance loss. Moreover, as mentioned by Sikka
et al. [20], such approaches are known to work well with uniform
actions that span the entire video (CK dataset). However, their per-
formance falls down when actions have high intra-class variations
and are localized in the video (UNBC Mc-Master Pain dataset). Se-
quential methods model a video as a sequence of observations and
employ dynamic models such as Hidden Markov Models for mod-
eling both appearance and transitions space of a video or expression
class [5]. These methods suffer from drawbacks such as over-fitting
due to many parameters and poor generalization performance on
unseen test data as the model is limited by underlying probabilis-
tic assumptions. In this work we briefly discuss an approach for
predicting self-report pain intensity measures using AFEA.

We propose to employ FACS-based image attributes for predict-
ing self-report measures of pain. To meet the requirements of an
automated system, the FACS code are computed using the Com-
puter Expression Recognition Toolbox (CERT) [12]. CERT is a
software tool that codes each frame in a video with respect to a
set of continuous dimensions that describe facial actions from the
FACS and also returns other parameters such as probabilities of 6
basic emotions and 3D pose information. CERT works by first de-
tecting a frontal face in a video and warping it to a canonical frame.
The registered face is then convolved with a gabor filter bank to
obtain image features. These features, along with labeled data, are
then used to train separate SVMs for each AU. During run-time
these pre-trained models are used to report activations for different
AUs in a face containing image. The CERT output for a segment
containing facial expression will be a time-series for different AUs.
Since training a ML model requires a vector representation for each
sample, an approach is required to summarize the time-series into
a compact vector representation. A static approach to accomplish
this is to summarize the time-series using naive statistics, such as
mean, maximum and minimum, followed by feature concatenation
[11]. It is also possible to use space-time approaches, such as "bag
of temporal features" as used by Bartlett et al. [4], for obtaining a
vector representation. Since our system is expected to predict con-
tinuous outputs, we need to train an appropriate regression model.
The regression model should be (1) robust to noisy self-report la-
bels, and (2) robust to over-fitting since the available data is not
sufficient to handle complexities in input and output space. This
requirement could be made possible in any regression model by
adding a penalty factor over learned weights and obtaining a sparse
solution such as Relevance Vector Machines [9], ε−SVM [19], re-
gression based feature selection via AdaBoost.RT [19].

3. EXPERIMENTAL ANALYSIS
In this section we discuss the experimental analysis performed

on both the pediatric pain dataset and UNBC Mc-Master Pain dataset.

3.1 Pediatric Pain Dataset
In order to substantiate the viability of the proposed method, we

conducted some basic statistical analyses on a subset of the dataset.
These analyses were used to test two specific hypotheses: (1) do
AU measurements differ between pain and no-pain periods, and
(2) are AU intensities and self-report measures correlated. These
experiments were conducted on a subset containing 40 children,

aged between 5-15 (mean age: 12 years), with their facial expres-
sions recorded in clinical pain (within 24 hours of surgery) and
no-pain (after clinical resolution) situations. This analysis was per-
formed on the video segments corresponding to the 5 minute on-
going pain (or rest) period. These video segments were passed as
input through CERT and activation for AUs related to pain were
extracted (AUs 4, 6, 7, 9, 10, 25, 43). The time-series for each AU
was consolidated into a single number using the mean statistic. The
pain ratings provided by children on NRS scale were used as the
self-report ratings. We found in our results that the mean differ-
ence between pain and no-pain periods is statistically significant
for AU4, AU 7, AU9, AU25 and AU45. The AUs that had sig-
nificant correlation with self-report measures were AU4 (r=0.22),
AU9 (r=0.47), AU25 (r=0.3) and AU45 (r=0.39). The testes are
conducted at 5% significance level.

3.2 Self-Report Predictions on UNBC Mc-Master
Pain Dataset

We designed a self-report pain intensity prediction task on this
dataset (200 videos and 25 subjects), which assessed the ability
of a system to predict pain intensity. Since our approach is based
on FACS coding, the feature representation for this dataset was also
constructed over FACS. This dataset is provided with manual FACS
codes for several pain related AU (AU4, 6, 7, 9, 10, 12, 20, 25, 26, 43).
The time-series for each AU was summarized using mean statistic
and finally a video was represented by vector containing the mean
measurement for different AUs. This feature representation was
employed to train a regression model (SVM with rbf kernel) using
self-report ratings on VAS scale as the ground-truth. The experi-
ments were conducted in a leave-one-subject-out cross validation
format by partitioning the data into subsets (called folds) that con-
tain data from only one subject. The data from one fold were held
for testing and the model is trained on the remaining folds, and the
process was repeated for all folds. The first performance metric
used for evaluation in this work was Mean Absolute Error (MAE),
which is the mean difference between the predictions and the true
labels. The second metric calculated the Pearson correlation co-
efficient between the predictions and the true labels. Instead of
calculating metrics separately for each fold, we calculated them by
concatenating the predictions from different folds into a single vec-
tor, as was done by Ashraf et al. [2].

The results for self-report prediction experiments on the UNBC
Mc-Master Pain dataset are show in Figure 1 as a plot between true
labels (X-axis) and prediction along with standard error (Y-axis).
The plot reveals that (1) there is a positive correlation between
the true labels and the predictions, (2) the trend between the true
and the predicted labels is non-linear, and (3) local regions of con-
stant predictions can be observed on Y-axis. Since the number of
training samples is less for self-report ratings with higher intensity,
the prediction error seems to increase with higher intensities. The
MAE is 2.28 and the Pearson correlation coefficient is 0.51. The
chance prediction in this experiment corresponds to predicting 5
(mean value of self-report intensities) in all cases. The MAE for
chance classification is 3.05 and the correlation coefficient is un-
defined owing to zero variance in the predictions. This shows that
the SVM-based regression is performing better than chance classi-
fication. It is also interesting to note that the correlation between
Observers’ ratings (OPI) and self-report is 0.66, which is higher
than the correlation obtained using our model predictions. How-
ever it should be noted that these ratings were performed by expert
observers and the correlation in case of inexperienced observers are
known to be reduced [17].
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3.3 Pain Detection on UNBC Mc-Master Pain
Dataset

We would also like to highlight our recent work on automatic
pain recognition in videos [20]. This approach tackled the joint
problem of, (1) classifying the expression in a video as pain/no-
pain, and (2) detecting pain in each video frame. The problem was
challenging since the algorithm was trained with limited ground-
truth that informed about only the absence or presence of pain in
the video without any information about its location. Our approach
consisted of using a latent model (called multiple instance learn-
ing) for learning visual patterns related to pain. This was combined
with a novel method of representing each video as bags of multiple
segments (or sub-sequences) in order to address temporal informa-
tion. Rigorous experiments demonstrated that our method obtained
state-of-the-art results on the task of pain classification compared to
previous approaches. Moreover it was also able to achieve promis-
ing results on the task of pain localization compared to algorithms
trained using complete ground-truth.

4. DISCUSSION
The results on the pediatric pain dataset highlight that certain

AUs show a statistically significant difference between their mea-
surements at pain and no-pain events and also have significant cor-
relation with the self-report measures. We are hopeful that more
data will allow us to perform more thorough analyses and yield
interesting insights into the problem of predicting self-reports in
pediatric pain. It is also evident from the results on the UNBC Mc-
Master Pain dataset that machine learning models built over FACS
coding are capable of predicting self-report measures of pain in-
tensity. Moreover there are various way for extending the naive
system presented in this paper and improving performance. Lastly
our previous work on pain detection showed that the problem of
estimating pain can benefit by using high-level machine learning
approaches that can effectively encode the underlying assumptions
in a problem.

Figure 1: Plot between true labels and predictions for the task
concerning prediction of self-report measures on the UNBC
Mc-Master Pain dataset.

4.1 Progress and Future Work
We wish to explore multiple research avenues for the problem

of estimating pain using AFEA. Firstly we are in the process of
preparing a detailed manuscript for presenting our initial findings
on the pediatric pain dataset. With this work we wish to explore
interesting questions pertaining to AFEA for pain expression such
as: (1) which action units contribute towards predicting self-report
measures in pediatric population, (2) difference in facial behavior
during ongoing and acute pain, (3) is it possible to design an au-

tomatic system that can perform equivalent or better than human
observers such as parents and nurses, (4) possibility of using mul-
tiple source of pain intensity groundtruth such as self-reports and
observer ratings, and (5) is it possible to predict time since surgery
using facial expression information. In addition this work also re-
quires working with robust regression models that can handle noisy
labels and variations in data. As a future plan we plan to com-
bine visual information along with Electrodermal activity (EDA)
for predicting pain.

As an extension of our previous work on detecting pain using
multiple instance learning, we are also investigating the applica-
tion of various latent models for improving expression recognition
in video in natural environments. This involves choosing apt un-
derlying assumptions for a particular problem and also making the
inference and learning procedures tractable. We believe that the
analysis of the underlying patterns discovered by models involving
latent variables will be of significant interest. We are also interested
in discovering novel machine learning methods for modeling the
temporal dynamics in a video. This would require either modify-
ing previous algorithms to include temporal information as done by
Sikka et al [20] or using robust sequential models [5]. The student
is in the process of presenting his thesis proposal to a committee.

5. ACKNOWLEDGMENTS
This work would like to thank Dr. Marian Bartlett (University of

Calfornia San Diego), Dr. Jeannie Huang (Rady’s Children Hospi-
tal and Univeristy of California San Diego) and Dr. Ken Craig (The
University of British Columbia) for leading the project. We would
also like to acknowledge contributions from other members of the
team- Alex Ahmed, Damaris Diaz and Laura Terrones. This PhD
work is supported by NIH grant NIH R01NR013500. Any opin-
ions, findings, conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

6. REFERENCES
[1] Aggarwal, J., and Ryoo, M. S. Human activity analysis: A review.

ACM Computing Surveys (CSUR) 43, 3 (2011), 16.
[2] Ashraf, A. B., Lucey, S., Cohn, J. F., Chen, T., Ambadar, Z.,

Prkachin, K. M., and Solomon, P. E. The painful face–pain
expression recognition using active appearance models. Image and
vision computing 27, 12 (2009), 1788–1796.

[3] Bartlett, M. S., Littlewort, G. C., Frank, M. G., Lainscsek, C., Fasel,
I., and Movellan, J. Recognizing facial expression: machine learning
and application to spontaneous behavior. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, vol. 2, IEEE (2005), 568–573.

[4] Bartlett, M. S., Littlewort, G. C., Frank, M. G., and Lee, K.
Automatic decoding of facial movements reveals deceptive pain
expressions. Current Biology 24, 7 (2014), 738–743.

[5] Cohen, I., Sebe, N., Garg, A., Chen, L. S., and Huang, T. S. Facial
expression recognition from video sequences: temporal and static
modeling. Computer Vision and Image Understanding 91, 1 (2003),
160–187.

[6] Craig, K. D. The facial expression of pain better than a thousand
words? APS Journal 1, 3 (1992), 153–162.

[7] Howard, R. F. Current status of pain management in children. Jama
290, 18 (2003), 2464–2469.

[8] Huguet, A., Stinson, J. N., and McGrath, P. J. Measurement of
self-reported pain intensity in children and adolescents. Journal of
psychosomatic research 68, 4 (2010), 329–336.

[9] Kaltwang, S., Rudovic, O., and Pantic, M. Continuous pain intensity
estimation from facial expressions. In Advances in Visual Computing.
Springer, 2012, 368–377.

[10] Kaseweter, K. A., Drwecki, B. B., and Prkachin, K. M. Racial
differences in pain treatment and empathy in a canadian sample. Pain

352



Research & Management: The Journal of the Canadian Pain Society
17, 6 (2012), 381.

[11] Littlewort, G. C., Bartlett, M. S., Fasel, I., Susskind, J., and
Movellan, J. Dynamics of facial expression extracted automatically
from video. Image and Vision Computing 24, 6 (2006), 615–625.

[12] Littlewort, G. C., Whitehill, J., Wu, T., Fasel, I., Frank, M.,
Movellan, J., and Bartlett, M. The computer expression recognition
toolbox (cert). In Automatic Face & Gesture Recognition and
Workshops (FG 2011), 2011 IEEE International Conference on,
IEEE (2011), 298–305.

[13] Littlewort, G. C., Whitehill, J., Wu, T.-F., Butko, N., Ruvolo, P.,
Movellan, J., and Bartlett, M. The motion in emotionâĂŤa cert based
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