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Abstract

Automated brain magnetic resonance image (MRI) segmentation is a complex problem especially if accompanied by quality depreciating
factors such as intensity inhomogeneity and noise. This article presents a new algorithm for automated segmentation of both normal and
diseased brain MRI. An entropy driven homomorphic filtering technique has been employed in this work to remove the bias field. The initial
cluster centers are estimated using a proposed algorithm called histogram-based local peak merger using adaptive window. Subsequently, a
modified fuzzy c-mean (MFCM) technique using the neighborhood pixel considerations is applied. Finally, a new technique called
neighborhood-based membership ambiguity correction (NMAC) has been used for smoothing the boundaries between different tissue classes
as well as to remove small pixel level noise, which appear as misclassified pixels even after the MFCM approach. NMAC leads to much
sharper boundaries between tissues and, hence, has been found to be highly effective in prominently estimating the tissue and tumor areas in a
brain MR scan. The algorithm has been validated against MFCM and FMRIB software library using MRI scans from BrainWeb. Superior
results to those achieved with MFCM technique have been observed along with the collateral advantages of fully automatic segmentation,
faster computation and faster convergence of the objective function.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

The need to estimate morphological changes in brain
tissues forms an important area of research. Various diseases
are accompanied by size alterations in brain tissues.
Examples of diseases belonging to this class include
demyelinating diseases, transverse myelitis, schizophrenia,
etc. [1,2]. Estimation of the expanse of brain tumors and
lesions is also instrumental in the determination of dosage for
treatment of such diseases. Estimation of tissue sizes thus
forms an extremely important aspect of treatment which
should be done as precisely as possible. This creates the need
to properly segment the brain magnetic resonance image
(MRI) into gray matter (GM), white matter (WM) and
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cerebrospinal fluid (CSF) and also to identify tumors or
lesions, if present.

High contrast, high spatial resolution and multidimen-
sionality have made MRI one of the most widely used
techniques for clinical diagnosis. Manual estimation for
detection of diminutive size changes in MR scans is prone to
human error. The large amount of data also makes the task
extremely cumbersome for human experts if done manually.
In order to overcome this difficulty, various computer-
analysis-based automatic and semiautomatic algorithms
have been proposed over the years. The segmentation
algorithms are broadly classified into two groups —
supervised and unsupervised segmentation [3]. In the
supervised approaches [4–8], a priori information is
provided, which forms the basis of the segmentation process.
Expectation maximization (EM) [8,7] and support vector
machines [9] belong to this class of algorithms. The
unsupervised approach [10,11] proceeds without any initial
information, and segmentation is achieved with the
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information extracted from the image itself. Examples of this
class of approaches include k-mean clustering, fuzzy c-mean
(FCM) clustering [12–14], etc.

Supervised techniques for segmentation suffer from the
drawback of manual intervention for providing a priori
information. These approaches assume a particular intensity
distribution function of the pixels which may not always
accurately fit the actual image intensity distribution.
Unsupervised approaches are generally fast and do not
require any a priori information. However, nonidealistic
conditions lead to the presence of intensity inhomogeneities
which culminates in intensity overlapping of different
tissues. Further, noise also poses problem especially in
conventional FCM approach where each pixel is dealt as a
separate unit, independent of its spatial information. This
leads to noisy segmented results.

In this article, we present an algorithm for fully automated
brain MRI segmentation. For automatic estimation and
subsequent removal of the bias field, the brain MR scan is
passed through a entropy driven homomorphic filter [15].
This is followed by histogram truncation and redistribution
based contrast enhancement (HTRCE). In this, the filtered
image is iteratively tested for delivering a minimum value for
a parameter called average variance. This value corresponds
to optimized contrast enhancement in the bias corrected
image. Once this is done, the number of tissue classes and
their intensity centers in the filtered and contrasted image is
estimated through its gray level histogram using a novel
method named histogram based local peak merger (HLPM)
which uses an adaptive window for automatically retrieving
the cluster centers. The so obtained centers using the
proposed method are fed as initial input to modified FCM
(MFCM) clustering method [16]. This not only reduces the
number of iterations but also shows a significant improve-
ment in the segmentation results. Finally, another novel
method for postprocessing named neighborhood based
membership ambiguity correction (NMAC) is used which
incorporates spatial information to smooth the boundaries
between two tissue classes and also to remove pixel level
noise present in the segmented results. The algorithm not
only shows improved results on both simulated and real MRI
but also has been found to correctly identify the number of
tissue classes including tumors, lesions, etc. The strength of
our algorithm lies in its simplicity along with ability to work
with a wide array of brain MRIs.

Organization of the rest of the article is as follows. The
following section gives an overview of the FCM algorithm
followed by an overview of the MFCM algorithm in the next
section. Section 4 explains our preprocessing and post-
processing steps. It is complemented with the discussion of
advantages of our proposed improvisations. In section 5, we
validate the results from our algorithms against results from
the well known FSL tool of Oxford University [17] and
from MFCM. The test data consists of both simulated data
from BrainWeb [18] and real MR scans. Discussions over the
results on both T1- and T2-weighted images have been done.
2. Fuzzy c-mean clustering

FCM clustering technique imparts a degree of fuzziness to
each data point corresponding to every cluster. The degree of
fuzziness is represented by membership grade μij such that

Xc
j = 1

lij = 1 ð1Þ

and,

XM
i = 1

lijbM : ð2Þ

μij∈(0,1) represents the membership grade of i'th pixel
for j'th cluster. i∈(1,…,M), where M represents the total
number of pixels in the gray-tone image. c is the number of
cluster centers. Larger value of μij implies greater proximity
of the i'th pixel to the center of j'th cluster.

The aim of the algorithm is to find well-defined member
grade for every pixel. This is done by iteratively minimizing
an objective function given by

Jk =

XM
i = 1

Xc
j = 1

lmij jxi � wjj ð3Þ

where, xi is the gray scale intensity value of the i'th pixel and
wj is the cluster center of j'th cluster. m is called fuzzification
parameter. It controls the noise sensitivity and the extent of
the effect of μij in the computation of cluster centers. k
represents the iteration count. m∈ (1.5,2.5) has been found
to be the optimal range for this parameter [19]. Correspon-
dingly, m = 2 has been taken as it lies in the middle of the
optimal range.

The minimization is done until the following condition
is achieved:

jJk � Jk�1jbejJk � J k�1ð Þj ð4Þ

The lower the value of e, the greater is the degree of
optimality achieved. e = 10−5 has been taken here.

To determine objective function, the matrix U = [μij] and
the vector W = [wj] are determined, which are given as

lij =

1

dijð Þ2
� � 1

m�1ð Þ

Pc
j = 1

1

dijð Þ2
� � 1

m�1ð Þ
; ð5Þ

wij =

PM
i = 1 l

m
ij xiPM

j = 1 l
m
ij

ð6Þ

where, dij is the distance between i'th pixel and j'th
cluster center.

The matrix U and vector W corresponding to minimized
objective function represents the final classification of pixels
and cluster centers.
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3. Modified FCM

Conventional FCM clustering technique suffers from the
drawback of considering pixels as independent units. This
makes it sensitive to noise. Previous works in literature find
the solution to this problem using localized spatial informa-
tion like neighborhood effect. In the methods proposed in
[16,14], a pixel membership grade not only depends upon its
own intensity but also on that of the neighboring pixels. The
neighborhood consideration mitigates the effect of noise on a
pixel. The membership grade of each pixel and the cluster
center is updated using weight, pij, which represents the
probability of i'th pixel belonging to j'th cluster and is
determined using neighborhood model. The method pro-
posed for determining weight pij is inspired from k-nearest
neighbor (k-NN) algorithm and is computed according to the
following formula

pij =

P
xnaNj

i

1

1 + a dijð Þ2P
xnaNi

1

1 + a dijð Þ2
: ð7Þ

where, α is a positive constant, Ni is a set of k nearest pixels
of the i'th pixel and, Ni

j is the subset of Ni consisting of
pixels belonging to j'th cluster.

In each iteration, of conventional FCM, μij is updated to
μi⁎j according to following equation

lTij = lijpij: ð8Þ

The cluster center in the next iteration is updated
accordingly using μij⁎ in place of μij according to Eq. (6).
4. Proposed algorithm

The MFCM approach dealt in the previous section has to
be manually fed with the number of clusters. In this section,
the innovative methods of contrast stretching (HTRCE),
initial cluster center retrieval (using HLMP) and postproces-
sing (NMAC) have been discussed in detail.

4.1. Bias field estimation and contrast enhancement

In MR scans, spatial variations occur within the tissues of
the same class due to inhomogeneity in the excitation field
caused by physical imperfections in RF coils of the MRI
machine. Many methods have been proposed and tested to
remove this artifact [20]. The most archaic method for the
removal of bias field is the measurement of the coil
insensitivity using a physical phantom [21]. The primary
drawbacks with this method is that manual feeding of this
phantom is required for the subsequent algorithm. The
method proposed by Wells et al. [7] and later modified by
Guillemard and Brady [22] made the use of a priori model of
the brain tissues (atlas) [8] and maximum likelihood criterion
for estimation and correction of the bias field. The drawback
of this method is that the a priori knowledge of tissue classes
is required, which, if not given correctly, may cause the EM
algorithm to converge early and erroneously. Though
methods employing neighborhood consideration, for exam-
ple, algorithms using Markov random fields (MRF) [23],
show improved results, they are known to be computation-
ally intensive. The FCM methods that incorporate the bias
field considerations in their objective function may not be
able to identify separate regions other than WM, GM and
CSF, like tumors and lesions [14]. A common example is an
attempt to model the bias field as a smooth function using
Legendres polynomial [24], splines surfaces [25], etc. As
more degrees of freedom are added, the method becomes
computationally more demanding and local minima in the
optimization become a cause of common error.

An extensive research done on different methods of bias
field removal [20] found that none of the methods proved to
be acceptably generic. The bias field has been found to be
slowly varying and should be removed prior to segmentation
as it leads to intensity overlapping among different tissue-
classes. In this paper we have used exponential entropy
driven Homomorphic Unsharp Masking (HUM) [15] as a
pre-processing tool for eliminating the field followed by
contrast stretching.

The bias field being a slowly varying field can be seen as
a low-pass multiplicative noise. An image can be expressed
as the product of illuminance and reflectance.

I x; yð Þ = i0 � i x; yð Þ � r x; yð Þ: ð9Þ

Here, I (x,y) is the observed image intensity at spatial
location (x,y), i0 is the desired constant illumination and r is
reflectance of the image. The artifact introduced by coil
inhomogeneity is given by i(x,y) [26].

Since we intend to use filtering technique for the
elimination of the bias field, the procedure cannot be
implemented directly due to the multiplicative nature of bias
field. For this, the image is manipulated in the logarithmic
domain where the inhomogeneity becomes additive and is
removed by a suitable filter.

G x; yð Þ = log I x; yð Þ½ � = log i0ð Þ + log i x; yð Þ½ � + log r x; yð Þ½ �;
Gbias x; yð Þ = IDFT DFT G x; yð Þ½ � H u; vð Þ½ �f g;

I V=G� Gbias;
Icor = exp I Vð Þ:

ð10Þ

Here, DFT is discrete Fourier transform and IDFT is
inverse discrete Fourier transform. H (u,v) is the Butterworth
realization of low-pass filter, I′ is the log transform of the
bias free image, Icor is the bias corrected image and Gbias is a
log transform of the bias field.

For finding the cutoff frequency of the filter, Butterworth
filter cutoff frequency method based on local entropy
measure [15] has been employed and was found to give
good results.
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The above process is followed by contrast stretching.
Though a number of techniques exist for contrast enhance-
ment [27], most of them do not perform satisfactorily with
the problem in hand.

This problem was handled by an algorithm proposed in
the current work named HTRCE. In this algorithm, contrast
stretching is achieved by truncating the ends of the histogram
of the image and renormalizing it. An optimal value for the
degree of stretching required is estimated by iteratively
minimizing a quantity called average variance, which we
define as

avar =
Xc
j = 1

Pnj
i = mj

jHi � /jj2Pnj
i = mj

Hi
ð11Þ

where,

/ =

Pnj
i = mj

Hi

nj � mj
: ð12Þ

Here, the range of i from mj to nj represents the bin
positions in the histogram of the image that lie in the j'th
cluster according to the initial U matrix. Hi represents the
value of the histogram at the i'th bin. Determination of c is
done using automatic retrieval method described in the next
subsection. The minimization of average variance corres-
ponds to pushing off the peaks in the histogram away from
each other so that the respective tissues are more distinct to
each other in their intensity values. At the same time, there
should not be overcontrasting which otherwise will lead to
feature loss in the image. This, according to Eq. (11), will
lead to increased avar. The image resulting from the above
operation is bias free and has enhanced contrast levels
between tissues. Another problem that has been addressed
in the current work is the minimization of streak artifacts
(whitening) at the boundaries after the homomorphic
filtering. For rectifying this problem, a mask is created
using region-growing algorithm to estimate the back-
ground, which is then replaced with the mean intensity
value of the region of interest pixels to minimize the
background while filtering.

4.2. Automatic retrieval of the number of clusters

In conventional FCM approach with neighborhood
considerations [14,16], there is no provision for automatic
assessment of the number of cluster centers. The method
proposed by Juan et al. [28] assesses the position of the
cluster centers by using weighted histogram, but this method
assumes fixed number of clusters in the region of operation
and, hence, leaves no room for anomaly detection such as
tumor or lesions. Also, the method to detect the peaks in the
histogram is quite heuristic and may lead to erroneous
estimation in case two peaks lie in proximity. In the current
algorithm, the number of distinct intensity regions in the bias
corrected and contrasted image are calculated using HLPM,
explained below.

The histogram of the image is smoothed using a running
average filter of order five. After this, as a primary estimation
step, we identify all the i'th bins in the histogram that satisfy
the following three criteria simultaneously.

Firstly, all the local maxima in the histogram are
evaluated using the following equation

HiNHj 8ja i� d; i + dð Þ
where δ is a predefined parameter which controls the
sensitivity of the algorithm for peak detection. A smaller δ
would ensure detection of majority of the local peaks
while a larger value for the same would lead to the
detection of prominently distinct peaks only. It was
experimentally observed that the best result is obtained
for δ = 7. However, it is to be noted that the detected
peaks may not be regarded as the correct estimation of
cluster centers as they may not be prominent from the
global perspective. To address this issue, the following two
steps are implemented.

HiN

PL
k = k0

Hk

2L
: ð13Þ

Here, L is the number of bins in the histogram. Note that
a certain portion in the beginning of the histogram is
constituted by the background of the MRI. Since this region
accounts for a major part of the image and is observed to be
restricted in a narrow intensity band near zero intensity
level, the peak in the first few bins histogram is abnormally
high. In order to eliminate the effect of background of the
image, consideration of the bins may be begun anywhere
from k0=6 to k0=13. In this article, the middle value, i.e.,
k0=9 has been taken. Otherwise, this will lead to abnormally

large values of

PL

k = k0
Hk

2L

 !
due to its large share in the

image. This criterion serves as a check so that only those
points are taken as peaks which have a certain minimum
value given by the above equation.

Xi
k = i�i0

grad Hkð ÞN0 and
Xi + io

k = i

grad Hkð Þb0 ð14Þ

where i0 is a predefined parameter and “gradq refers to
gradient function. This condition eliminates those points
which qualify the first two conditions due to irregular
peakings in the histogram and not due to their being a
distinct region of intensity.

The above process gives “primary” cluster centers. Some
of these may be extraneous due to unsatisfactory peaking or
close proximity of the peaks due to varied modality of the
MRIs. This problem is resolved by employing an adaptive
window over primary peaks. The algorithm merges two
peaks, p1 and p2, and allocates as the new cluster center the
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one which is higher, if the following two criteria are
satisfied simultaneously

2HLN mean Hp1;Hp2

� �
: ð15Þ

Here, HL is the minima between these two peaks. This
introduces an adaptive vertical window of height equal to
half the mean value of the two adjacent peaks [mean (Hp1,
Hp2)]. The two peaks are not distinct if the minima between
them lies outside this window.
and,

jp1 � p2jbw1 or jp1 � p2jbw2 ð16Þ
where, p1 and p2 are the two peaks being considered for
merging, and wp refers to an adaptive horizontal window for
a peak, p, defined as

wp =

����g Hp;avg

Hp

� �1
2
����: ð17Þ

Here, |x| represents the absolute value of any number x,
and γ is a parameter used to bring the window size in the
order of the range of the number of histogram levels.
Histograms of a wide variety of MRIs were taken and
impressive results were obtained for γ=50. Hp,avg is the
average for a peak given by

Hp;avg =

Pp + b
k = p�b Hk

2b + 1
: ð18Þ

β defines the range of the histogram levels over which a
lobe containing a peak is covered. The optimum value for
β has been experimentally found to be 10. The criterion
tests the proximity of the adjacent peaks being considered
for merging.

The number of points (peaks) left represents the number
and positions of the intensity levels recognized as initial
cluster centers.

The histograms of the MRIs have been taken on 256
levels for all modalities of image formats. It is worth
mentioning that the values of all the above parameters
Fig. 1. (A) Real brain MRI. (B) Segmented result showing amb
depicted amenable performance over MR scans obtained
from various sources, i.e., simulated data, scans from real
MRI machines, and data procured from Harvard University
[(Internet Brain Segmentation Repository (IBSR)] Web site.
Detailed analysis of the results has been conducted in Section
5. Evidently, the parameteric values obtained above are
generic to a considerable extent.

4.3. Postprocessing using NMAC

After the application of MFCM to the unbiased and
contrast-enhanced image, we obtain an interim segmented
image. In the process of clustering according to the final
membership function U found by MFCM, a number of
pixels are encountered where the difference in their
membership grades for two clusters is too low. Regions in
the proximity of the boundaries have been found to be
attributed with this characteristic. Pixels in such regions are
marked with fairly close intensity levels and constitute a set
of “ambiguous pixels.” These pixels form smudged
boundaries between tissue classes. In normal FCM or
MFCM, such pixels are classified into that cluster for
which their membership grade is maximum. However, this
may lead to misclassification as the extent of belongingness
to a particular class is uncertain. This poses a problem in
accurately determining the area of the brain tissues and
anomalies like tumor and lesions in a brain MR scan. To
cater a solution for this issue, we present a method based on
neighborhood effect.

We define ambiguous pixels as those in which the
difference between the maximum and any other value of its
membership grade is less than 0.15. The segmentation result
for a tumour as shown in the box in Fig. 1A has been
enlarged and shown in Fig. 1B. In this, the ambiguous pixels
are shown in green color. Experimental observations for such
cases show that the pixels constituting the periphery of these
smudged boundaries are less ambiguous than the inner ones.
Since the identification of ambiguities is dependent upon the
spatially neighboring pixels, the outer pixels should be
corrected first followed by the inner ones. This is because the
outer pixels have greater probability of having more number
iguous pixels in green color for the region inside the box.
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of correctly classified pixels as their neighbors as compared
to the inner pixels. Taking cue from this hypothesis, the set of
ambiguous pixels, A, is divided into three subsets according
to the extent of ambiguity, which are given by

A1 = xijxi a A & jli1 � li2j b0:05f g;
A2 = xijxi a A & 0:05 V jli1 � li2j b0:1f g;
A3 = xijxi a A & 0:1 V jli1 � li2j b0:15f g

ð19Þ

Such that

A = A1 [ A2 [ A3 ð20Þ
where, xi represents the i'th pixel in the image and μi1 is max
{μij} and μi2 is max {μij\μi1} ∀j ∈ {1,…,c} and c is the
number of cluster centers.

We define C as the set of correctly classified pixels
given by

C = xijxigAf g: ð21Þ

The sets A3, A2 and A1 represent the increasing orders
of ambiguity.

We first consider N as the set of nearest neighbors of the
i'th pixel where xi ∈ A3. We define Nc as the set of
neighboring pixels of i'th pixel which are distinctly classified
as is given by

Nc = N \ C: ð22Þ

Consider θik such that

hik =
1 if lik = li1
0 otherwise

�
ð23Þ

Now, the i'th pixel belongs to the kth cluster if

X
xiaNc

hik = max
X
xiaNc

hij

( )
8ja 1; N ; cf g ð24Þ

If the above equation becomes valid for some other
cluster, l, also, then the i'th pixel belongs to the kth cluster ifX
xiaNc

likN
X
xiaNc

lil: ð25Þ

otherwise it belongs to l.
The above procedure is repeated for all the points of A3

after which we proceed onto points of A2 and then finally to
A1. This process significantly improves segmentation results,
especially in cases of noisy scans.
Fig. 2. Block diagram of the
The overall algorithm can be schematically represented
by the block diagram shown in Fig. 2.
5. Experiments and results

In this section, we evaluate the performance of the
proposed algorithm. We first present the utility of the
preprocessing steps of homomorphic filtering, HTRCE,
estimation of the number of cluster centers along with their
initial positions and NMAC. This is followed by qualitative
as well as quantitative discussions of the results. Lastly, we
compare the results of our algorithm against conventional
MFCM along with Yale University's BioImage Suite [29]
which is built around the package FMRIB's Automated
Segmentation Tool and Brain Extraction Tool [present in
FMRIB's Software Library (FSL)] [17] developed by
Oxford University. The FSL software employs EM algo-
rithm coupled with hidden MRF model for segmentation
problems [30] and has achieved wide acceptance. The testing
is done both on real brain scans obtained from PanchamMRI
Center, Bareilly, India, as well as on the simulated database
available from BrainWeb simulator repository [18]. MINC
files and phantoms for normal anatomical brain have been
taken from BrainWeb. The modalities include scans with
noise 0% to 9% of both 0% and 40% inhomogeneity. File
format conversions from MINC to DICOM have been done
using Microview-3D Volume Viewer and Analysis Software
[31]. BrainSuite2 [32] has been used for skull striping of the
various MRIs used. This is done to prevent erroneous results
which may occur because of the inclusion of skull and other
brain tissues of same intensity level, e.g., fat tissues, in the
same cluster.

Parameter values used in the algorithm have been obtained
through rigorous improvisation and are tested over a variety
of images obtained from different MR imaging machines and
also on simulated images. These values have been kept fixed
for all the test images taken and satisfactory results have been
obtained with these. This shows that although there are a
range of different user-defined parameters in the current
algorithm, they need to be estimated only once.

The segmentation was executed using both, four and eight
nearest neighbors. The improvement in results with eight
nearest neighbors was found to be insignificant but was
accompanied with almost twice the computational time.
Hence, for all segmentation experiments, four nearest
neighbors have been considered.

Performance evaluation of the algorithm commences
with the depiction of the utility of pre-processing step,
proposed algorithm.



Fig. 3. (A) Original image. (B) Image segmented by modified FCM without the pre-processing step. (C) Histogram of the gray tone image without the pre-
processing step along with the points identified as cluster centers. (D) Image obtained after the pre-processing step. (E) Image segmentation with the pre-
processing step. (F) Histogram of the gray tone image with the preprocessing step along with the points identified as cluster centers.
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i.e., homomorphic filtering technique followed by
HTRCE. Here, we present how contrast enhancement
makes tissue classes more distinctly identifiable. They are
then correctly located by our method of automatic cluster
retrieval. For this, we take a real T2-weighted brain scan
with TR=6860 and TE=78. As is evident from Fig. 3A, it
is quite difficult to distinguish between GM and WM.
Due to this, HLPM yields only two distinct regions in the
gray level histogram of the original image as shown in
Fig. 4. Plots depicting the convergence of the objective functions
Fig. 3C. However, the same image yields three cluster
centers, Fig. 3F, after the preprocessing step described in
Section 4. The results shown in Fig. 3B and Fig. 3E
present the inability of the first method to distinguish
between the GM and WM, while the same is done quite
efficiently after homomorphic filtering and HTRCE. The
effect of HTRCE can be observed in the form of right-
shifting of the peaks, Fig. 3F, of the histogram of the
original image shown in Fig. 3C.
for the two algorithms of modified FCM and our algorithm.
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Our algorithm automatically estimates three cluster
centers because of the preprocessing steps, due to which
the segmentation result as shown in Fig. 3E is better than
that from MFCM segmenter (Fig. 3B). The reason for
identification of only two cluster centers in the unprocessed
image can be attributed to its distributed histogram. Even if
the number of cluster centers is manually made three in
MFCM segmenter, then also the segmentation results are
not comparable to that obtained from our algorithm. The
result is also supported by the objective function plot for
the three cases as shown in Fig. 4. It should be noted here
that MFCM, in this case, takes 86 iterations, whereas our
algorithm takes just 60 iterations. Since same calculations
are observed in both the cases, the time duration for each
iteration is same for both the cases. The bold line represents
the objective function trend for our algorithm (with
automatically extracted three cluster centers). The dotted
and the dashed lines represent the objective functions for
the MFCM segmenter with three and two randomized
initial cluster centers, respectively. This set of results
demonstrates the utility of predetermination of probable
cluster center positions.
Fig. 5. (A) Real tumorous brain MRI. (B) Segmentation result for part a. (C) Real T
MRI (obtained from BrainWeb). (F) Segmentation result for part e. (G) Brain MRI o
As an example of the efficiency of the preprocessing
step, two segmentation results of tumorous real brain MR
scans are shown in Fig. 5. The input images in Fig. 5A and
Fig. 5C are T2-weighted MR scans with TR=4940 and
TE=112. Image in Fig. 5G is a simulated normal brain
image obtained from BrainWeb and Fig. 5G shows MRI
made available by Harvard University (IBSR) [33]. As can
be observed in Fig. 5A, the intensity of the affected region
is marginally different from the WM tissues, while the
tumor in the scan in Fig. 5C has diffused boundary. Still,
impressive tissue classification have been observed for both
the images marked with clear boundaries. Notable
segmentation is observable for the other two cases as
well. Although, some nontumorous regions have been
classified as tumorous tissues in Fig. 5B and 5D, the
algorithm achieves it's primary goal of overting the
otherwise obscure anomalies present in the MR scans,
which can be easily handled by human experts and actual
tumorous region can be identified.

Now, we move onto qualitative estimation of the effect of
using NMAC. Fig. 6 shows how NMAC technique removes
the pixel level noise from the segmented result of a section of
umorous brain MRI. (D) Segmentation result for part c. (E) Simulated brain
btained from Harvard UniversityWeb site. (H) Segmentation result for part g.



Fig. 6. (A) Synthetic image. (B) Result without NMAC. (C) Smoothed result with NMAC.
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WM in a noisy simulated image. The algorithm also
introduces smoothing of the boundary of the WM region.

For quantitative evaluation of the proposed algorithm,
BrainWeb normal brain simulated database with noise
ranging from 0–9% and inhomogeneity of 0% and 40%
for each of these noise levels have been used.
Performance analysis is based on three figures of merit:
sensitivity (ρ), specificity (σ) [34] and similarity index (τ)
[35], and comparison has been made with other
established methods. Here again, phantoms available on
BrainWeb repository have been taken for reference (as
ground truth). It has been ensured that the algorithms
under consideration work with the same number of cluster
centers. For calculating these figures of merit, we first
find out the true-positive (TP), true-negative (TN), false-
positive (FP) and false-negative (FN) parameters for the
algorithms. Pixels classified in the correct region are
referred to as true; else, false. The pixels that are
observed to be classified into a particular region are
termed as positive, while the ones that are not are called
as negatives.

Given the above four parameters, sensitivity is given as

q =
TP

TPþ FN
: ð26Þ

Similarly, specificity is given as

r =
TN

FPþ TN
: ð27Þ

Lastly, similarity index is given by

s =
2� TP

Segþ Ref
ð28Þ

where Seg refers to the set of pixels classified into a
particular region by the current algorithm and Ref refers to
the phantom-based ground truth for that region.
Though the three figures of merit are complimentary,
i.e., all of them should be taken into account for
segmentation result analysis, similarity index is more
influential than the other two [34]. For MRI segmentation
purpose, τN0.7 has been considered as exceptionally
good result [35].

Quantitative evaluation begins with the testing of
NMAC. A comparison of the MRI segmentation results
without and with NMAC procedure has been shown in
Table 1. The rest of the algorithm has been kept identical
for the two cases. This evaluation is done using different
MRIs from the BrainWeb normal brain simulated
database. Results for three such cases are shown in the
table. The phantoms available on BrainWeb repository
[18] along with these scans have been taken as the
reference for comparison.

The values of similarity index, τ, as shown in Table 1 for
the two sets of cases, clearly depict the improvement in
results brought about by the post processing step, NMAC.

Moving on to the overall performance measurement of
the proposed algorithm, as an example, for an image with
3% noise and 40% inhomogeneity, our algorithm gives
τ=0.951 for GM. Result for the same as given by the
widely acclaimed FSL tools for MRI segmentation
developed at Oxford is .920. It can be noted that this
open source software requires the manual feeding of the
number of clusters.

Finally, a comparative study for the three algorithms
(including the MFCM) has been presented in Table 1. In this
table, a total of 12 cases have been discussed. A wide range
of image modalities have been considered. This ensures that
performance of the proposed algorithm is tested for most of
the practically observed cases.

Table 2 shows that our algorithm outperforms MFCM in
almost all the cases. Another observation is the exceptionally
good performance of the BioImage (FMRIB) in terms of ρ
values for WM. However, the same parameter shows quite
lower values for GM. The reason for this is that the
segmentation of WM by BioImage produces a result which
almost fully encompasses the phantom area and hence,
according to Eq. (26), the value of sensitivity comes out to be



Table 1
A comparative study of the effect of using NMAC

MR Scan
modality

Without NMAC With NMAC

Sensitivity (ρ) Specificity (σ) Similarity (τ) Sensitivity (ρ) Specificity (σ) Similarity (τ)

WM
7–20 0.9315 0.9789 0.9325 0.9341 0.9847 0.9424
7–40 0.8988 0.9824 0.9200 0.9094 0.9776 0.9301
9–20 0.8835 0.9740 0.8991 0.9078 0.9785 0.9191

GM
7–20 0.8852 0.9663 0.8658 0.9116 0.9680 0.8839
7–40 0.8969 0.9568 0.8536 0.9121 0.9535 0.8658
9–20 0.8605 0.9494 0.8195 0.8833 0.9576 0.8477
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very impressive. However, due to this “ballooning of the
WM,” the segmentation of GM produces constricted regions
which results in much lower TP and, hence, lower ρ.
Overall, our algorithm produces better results for more than
70% of the cases.
6. Conclusions and discussions

We have devised a fully automated methodology to
segment MR scans of both diseased and normal brain.
The algorithm shows promising results with both real and
simulated MRI of both modalities, i.e., T1- and T2-
weighted scans and, hence, can prove to be of significant
utility in assisting human experts to segregate scads of
MRI data. The algorithm begins with a preprocessing step
where we implement automatic bias removal and contrast
enhancement. This is followed by automated retrieval of
mean intensity positions of various tissues detected. The
corrected image is then passed on to an MFCM
segmenter. The segmented result so obtained is further
passed through NMAC which smoothes the ambiguous
Table 2
Showing the comparative performance chart of the Modified FCM, BioImage Sui

MR scan
modality

Modified FCM BioImage suite (FMR

Sensitivity (ρ) Specificity (σ) Similarity (τ) Sensitivity (ρ) Spec

WM
3–0 0.97184 0.99255 0.97792 0.87141 0.97
3–40 0.94462 0.98892 0.95996 0.99504 0.97
7–0 0.94019 0.96742 0.93678 0.99230 0.94
7–40 0.89884 0.97324 0.92000 0.99494 0.96
9–0 0.87685 0.95751 0.83804 0.98522 0.96
9–40 0.86340 0.95953 0.88736 0.98544 0.94

GM
3–0 0.88889 0.97905 0.90733 0.866138 0.93
3–40 0.95582 0.96095 0.91249 0.89461 0.98
7–0 0.88610 0.95416 0.86745 0.84309 0.97
7–40 0.89755 0.93743 0.85120 0.89754 0.97
9–0 0.85161 0.92384 0.80932 0.73638 0.96
9–40 0.85249 0.91890 0.80382 0.83370 0.96
boundaries and also removes pixel level noise in between
continuous regions of intensities.

The testing is done both on real brain scans obtained from
Pancham MRI Center, Bareilly, India as well as on the
simulated database available from BrainWeb. Results were
found to be superior than those obtained using the
established methods. The better results are also complemen-
ted with lesser computational costs due to lesser number of
iterations required.

The performance of our algorithm was found to be better
than that of the FSL library tool-based software in majority
of the test cases taken.

Because of the fully automated nature of the algorithm
with no human intervention, along with lesser number of
iterations taken, the proposed algorithm is deemed to be a
good candidate for fully automatic MRI analysis systems.
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te (FMRIB) and our algorithm

IB) Proposed algorithm

ificity (σ) Similarity (τ) Sensitivity (ρ) Specificity (σ) Similarity (τ)

274 0.90210 0.93470 0.98496 0.95065
006 0.96684 0.95084 0.98842 0.96273
928 0.94282 0.94673 0.97598 0.94853
833 0.95677 0.90939 0.97764 0.93009
809 0.90788 0.89810 0.96446 0.91161
487 0.93500 0.87500 0.96976 0.90360

987 0.83336 0.94745 0.97737 0.93267
704 0.92042 0.91338 0.96290 0.95112
550 0.86958 0.91634 0.95660 0.88729
364 0.89808 0.91208 0.95355 0.86576
860 0.79666 0.87685 0.93524 0.83804
848 0.85285 0.88390 0.92641 0.83068
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