
Exploring Bag of Words Architectures for Facial Expression Recognition

Neutral or Sad

Karan Sikka, Tingfan Wu, Joshua Susskind and Marian Bartlett

Machine Perception Lab University of California, San Diego

Motivation

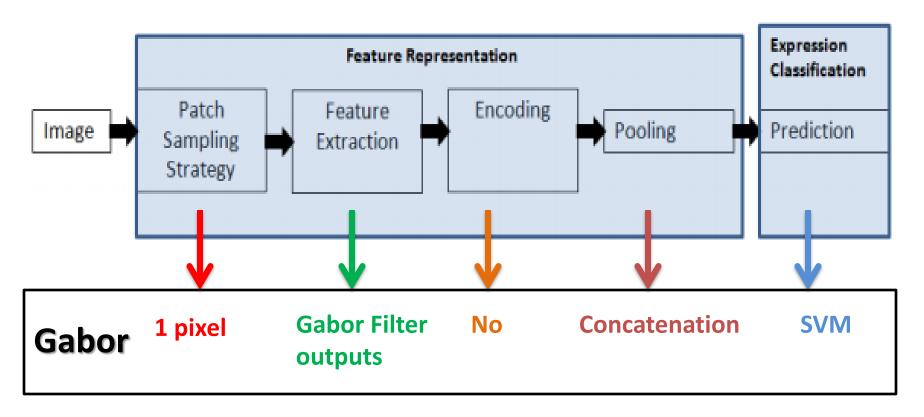
- Advancements in BoW model
- Advantages over other methods
 - Ex. Gabor, Local binary patterns
- Recently applied to subordinate level classification problems
- Few previous studies and/or systematic evaluations

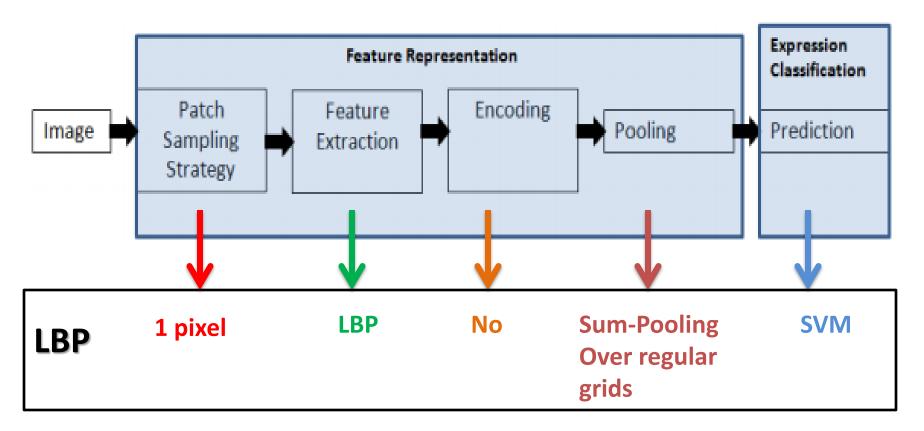
Goals

- Compare BoW to current approaches
 Ex. LBP and Gabor
- Identify differences in BoW model for AFER vs. object (or scene) recognition
- Propose a BoW pipeline tailored to requirements of AFER
- Evaluate the contribution of each component of the proposed BoW pipeline

Challenges

 Fundamental differences described between faces and objects*

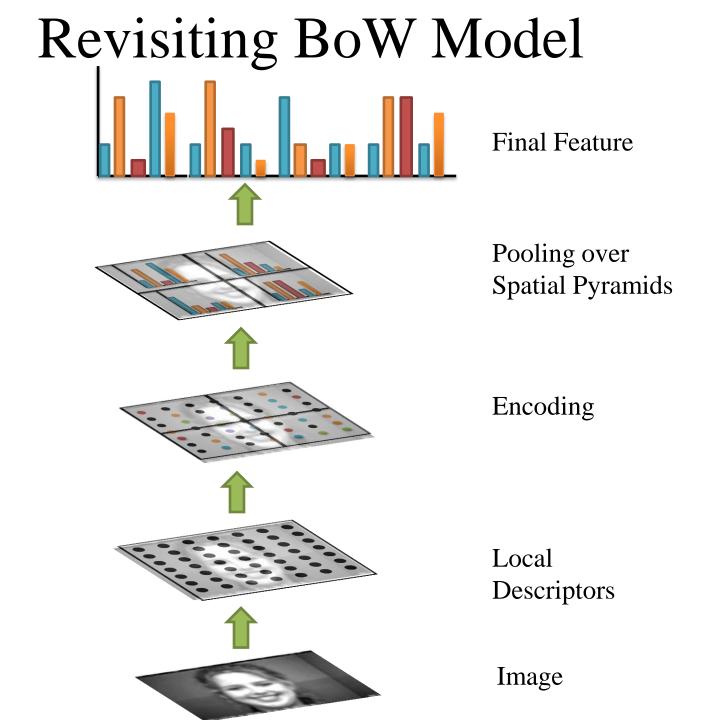



• BoW pipeline suited for objects may differ for faces

* Biederman et.al, Neurocomputational bases of objects and bases, Neurocomputational bases of objects and face recognition (1997).

Components of AFER Approach

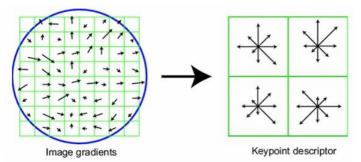
Components of AFER Approach


Related Works

Appearance based Discriminative Approaches

- Gabor wavelets:
 - Multi-scale-orientation features extracted densely at every pixel.
 - *Lower spatial invariance relative to other features.
- LBP: Local Binary Patterns
 - Binary Histograms encoding local texture.
 - Features pooled over Rectangular region of support achieving higher spatial invariance.
 - Selecting grid-pattern is a non-trivial problem.

Related Works


- $BoW + PHOG^*$:
 - Visual words pooled over 4 facial regions obtained via segmentation.
 - Fused PHOG features at classifier level.
 - ✤BoW representation didn't give good performance alone.
- Unanswered question: if BoW has any coding advantages?

Proposed Approach

• Features

- SIFT- Scale invariant Feature Transform.
- Histograms of gradient.
- Sampling

- Dense or sparse (interest points) sampling.
- (1) Interest point based features saturate* (2) Patches at fine-scales are most informative*.
- Multi-scale dense SIFT- MSDF features.

Proposed Approach

• MSDF

- Dense: Features extracted every 2 pixels.
- Multi-scale: SIFT spatial bin set to 4, 8, 12, 16, 24.

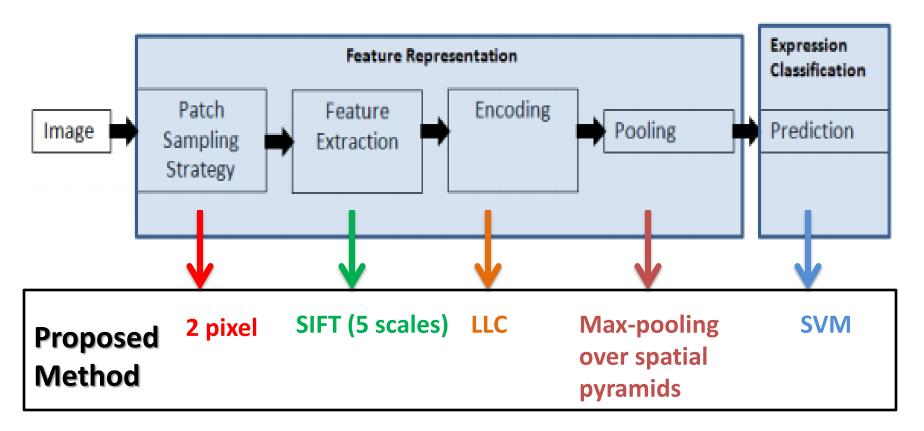
• Codebook

- Approximate k-means clustering.
- Codebook size set to 800 (empirically).

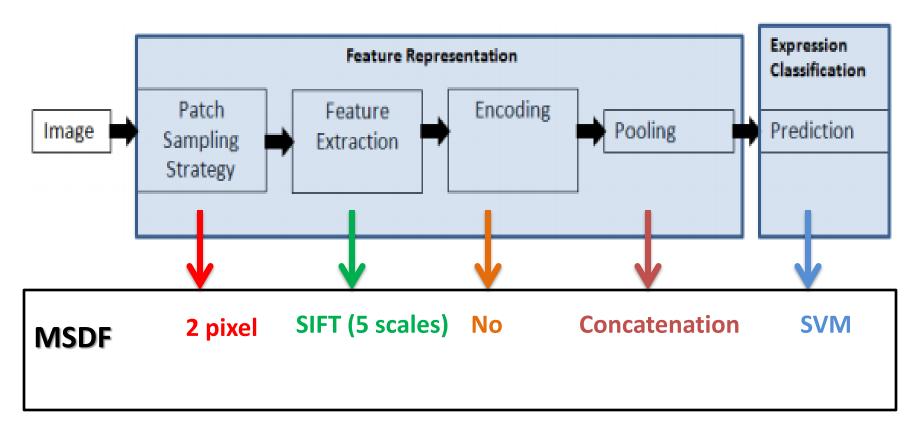
Encoding and Pooling

- Encoding and pooling is important for good classification*.
- Employ LLC with max-pooling.

Proposed Approach


- LLC- Locality Constrained Linear Encoding*.
- Projects each descriptor to a subspace spanned by few codewords.

Spatial information


- Spatial Pyramid Matching (SPM) framework.
- Advantage: Standard way to pool features. (vs LBP and BoW+PHOG).
- Shown to work well and eliminates need to find the best grid pattern.

Components of AFER Approach

Components of AFER Approach

Datasets

• CK+

- 123 subjects.
- Seven facial expressions.
- 327 Samples (peak-frame).
- Leave-one subject out validation

• Adfes

- 22 subjects
- Six basic emotions
- 216 Samples (peak-frame).
- 5 fold cross validation on subjects. (Balanced training set)

Comparison Architectures

• Pre-Processing:

- Variant of Viola Jones detector.

• Gabor:

- Gabor* (72 Filters) + Linear SVM.

- LBP:
 - Uniform LBP histograms
 - Best performing parameters selected for fair comparison.
 - Polynomial kernel SVM.

* Littlewort et.al, The computer expression recognition toolbox (cert), FG 2011

DATASET	ADFES	CK+
Gabor	94.59 <u>+</u> 2.61	91.81 ± 1.94
LBP	94.96 <u>+</u> 1.96	82.38 ± 2.34
Proposed Method	96.30 <u>+</u> 1.08	95.85 <u>+</u> 1.40

• How does BoW compare to previous approaches?

DATASET	ADFES	CK+
Gabor	94.59 <u>+</u> 2.61	91.81 ± 1.94
LBP	94.96 ± 1.96	82.38 ± 2.34
Proposed Method	96.30 ± 1.08	95.85 ± 1.40

- BoW outperforms previous state of the art approaches.
- Thus BoW provides performance benefits for AFER.

DATASET	ADFES	CK+
MSDF	92.59 ± 3.41	94.34 ± 1.62
Simple BoW	94.09 ± 2.32	92.67 <u>+</u> 1.93
SS-SIFT + BoW	93.30 ± 1.13	93.28 <u>+</u> 1.76
Proposed Method	96.30 ± 1.08	95.85 ± 1.40

- Does BoW gives any performance advantages over MSDF features.
 - Employed MSDF features without encoding and pooling (similar to Gabor).

DATASET	ADFES	CK+
MSDF	92.59 <u>+</u> 3.41	94.34 ± 1.62
Simple BoW	94.09 <u>+</u> 2.32	92.67 <u>+</u> 1.93
SS-SIFT + BoW	93.30 <u>+</u> 1.13	93.28 <u>+</u> 1.76
Proposed Method	96.30 ± 1.08	95.85 <u>+</u> 1.40

- "BoW provides performance benefits beyond MSDF features"
 - MSDF has lower performance compared to proposed method involving BoW.

DATASET	ADFES	CK+
MSDF	92.59 <u>+</u> 3.41	94.34 ± 1.62
Simple BoW	94.09 <u>+</u> 2.32	92.67 <u>+</u> 1.93
SS-SIFT + BoW	93.30 ± 1.13	93.28 <u>+</u> 1.76
Proposed Method	96.30 ± 1.08	95.85 <u>+</u> 1.40

• How does Multi-scale SIFT (MSDF) compare to single scale SIFT (SS-SIFT)"

- Employed SS-SIFT instead of MSDF with the proposed pipeline.

DATASET	ADFES	CK+
MSDF	92.59 <u>+</u> 3.41	94.34 ± 1.62
Simple BoW	94.09 <u>+</u> 2.32	92.67 <u>+</u> 1.93
SS-SIFT + BoW	93.30 <u>+</u> 1.13	93.28 <u>+</u> 1.76
Proposed Method	96.30 ± 1.08	95.85 <u>+</u> 1.40

- "Multi-scale SIFT (MSDF) are better than single scale SIFT (SS-SIFT)"
 - MSDF features give 3% advantage over single scale features.

DATASET	ADFES	CK+
MSDF	92.59 <u>+</u> 3.41	94.34 ± 1.62
Simple BoW	94.09 <u>+</u> 2.32	92.67 <u>+</u> 1.93
SS-SIFT + BoW	93.30 <u>+</u> 1.13	93.28 <u>+</u> 1.76
Proposed Method	96.30 ± 1.08	95.85 ± 1.40

• Is *LLC* + *max-pooling* better than *simple voting* + *sum-pooling* (simple BoW) for AFER.

DATASET	ADFES	CK+
MSDF	92.59 <u>+</u> 3.41	94.34 ± 1.62
Simple BoW	94.09 <u>+</u> 2.32	92.67 ± 1.93
SS-SIFT + BoW	93.30 <u>+</u> 1.13	93.28 <u>+</u> 1.76
Proposed Method	96.30 <u>+</u> 1.08	95.85 <u>+</u> 1.40

- "*LLC* + *max-pooling* is better than *simple voting* + *sum-pooling* (simple BoW)".
 - LLC with max-pooling lead to significant improvement.

DATASET	ADFES	CK+
MSDF	92.59 <u>+</u> 3.41	94.34 ± 1.62
Simple BoW	94.09 ± 2.32	92.67 ± 1.93
SS-SIFT + BoW	93.30 ± 1.13	93.28 ± 1.76
Proposed Method	96.30 <u>+</u> 1.08	95.85 <u>+</u> 1.40

• "Most substantial benefit by Spatial Pyramids"

DATASET	ADFES	CK+
MSDF	92.59 <u>+</u> 3.41	94.34 ± 1.62
Simple BoW	94.09 <u>+</u> 2.32	92.67 ± 1.93
SS-SIFT + BoW	93.30 ± 1.13	93.28 ± 1.76
Proposed Method	96.30 ± 1.08	95.85 ± 1.40

- "Most substantial benefit by Spatial Pyramids"
 - Without SPM performance dropped from 95.9% to 83.1% for CK+.

Conclusion

- Explored application of BoW for AFER.
- Spatial information provided by SPM
 - Performance drops significantly without it.
- Employed highly discriminative MSDF features
 - Multi-scale SIFT better than single-scale SIFT.
 - Non-linearities introduced in BoW provide performance benefit beyond MSDF features.
- Application of novel encoding and pooling strategies for AFER
 - Better than traditional histogramming techniques.

Questions?

Thanks

Karan Sikka

Machine Perception Lab UCSD Tingfan Wu

Dr. Joshua Susskind

Dr. Marian S. Bartlett