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Abstract

Neural models of contextual integration typically incorge a mean firing rate repre-
sentation. We examine representation of the full spike tdigtribution, and its usefulness
in explaining contextual integration of color stimuli iniiary visual cortex. Specifically,
we demonstrate that a factorizable model conditioned omaingber of spikes can account
for both the onset and sustained portions of the responseal$tieconsider a simplified
factorizable model, that parametrizes the mean of a Gaud@é#ibution and incorporates
a logistic nonlinearity. The model can account for the dosthresponse but does not fair
as well in accounting for onset nonlinearities. We discugglications for neural coding.
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Sensory neurons exhibit striking nonlinear behaviors @ititegration of contextual
information. For example, it has been widely documentetttteresponse of a neuron to
an optimal center stimulus inside the classical recepteld tian be nonlinearly modulated
by a surround stimulus that by itself exerts no responsesiméuron (e.g., [1, 2]). However,
the computational nature of this interaction for a rangeeniter and surround stimuli is not
well understood. Here we focus on contextual integratiooobdr in primary visual cortex
(area V1) [3].

Neural responses are often analyzed and modeled accoalihg mean firing rate.
But when a neuron is presented with multiple stimulus repeate can also characterize
the fluctuations around the mean firing rate, and more gdpesiadpike count distribution.
Specifically, we examine a neural model that is factorizabtbe spike count domain: con-
ditioned on each spike count (say 0 spikes, 1 spike, and sthergrobability of response
can be factorized into a component selectively determinetthd center, and a component
selectively determined by the surround. Similar modelsshasen developed by Morton
and Massaro to explain a wide range of information integratiata in the psychophysical
realm [4, 5], and hence have been calMorton Massaro [6, 7].

We demonstrate the ability of the Morton Massaro model t@actfor color con-
textual effects in V1 neurons, in comparison to a control eiod@he control is chosen to
exemplify that there exists a model with the same numbere#d frarameters as Morton



Massaro, that cannot account for the data. This illustrgtasthe Morton Massaro model
can explain the data not merely due to flexibility in its numdifree parameters. An earlier
version of this work is described in Movellan et al. [7]. We@tonsider a parametric spike
count distribution model, th&aussian logistic model, that conforms to Morton Massaro
factorizable coding, but contains significantly fewer pagters. Both factorizable models
account well for the sustained response, including supmesvhen the center matches
the surround color; Morton Massaro fairs better in char&tey the onset of the response,
including suppression when the center matches the surrmalod and excitation when the
center is opposite the surround color.

M ethods

Animal experimental methods and preparation are desciibetbtail in Wachtler et al.
[3]. Data were collected from awake fixating rhesus monk&tamuli were homogenous
isoluminant color squares centered on and at least twiceitleeof the estimated receptive
field of the neuron. A background stimulus surrounding thetexewas either color or
neutral gray. The color surround was typically chosen frbmdolors to which the neuron
showed a clear response. For each trial, one of eight cetiteulisand one of the two
surround stimuli were presented for 500 milliseconds. Altof 94 units were recorded,
and 20 units were chosen with strongest background effattaaminimum of 16 trials
per condition. Spike histograms were computed for spikegimt the onset (a window at
50-100 milliseconds following stimulus presentation) aimel sustained response (100-200
milliseconds).

Typical nonlinearities observed in the mean firing of V1 m&sr for a neutral gray
versus color surround are described in [3]. The color sudoaften induces most suppres-
sion when the center is matched to the surround color. Irtiaddiexcitation for the color
surround condition is sometimes observed when the centiee ispposite color of the sur-
round. We find that such excitation is particularly prominguring the early stages (onset)
of the response, albeit that the color surround alone doesliei a response. The combi-
nation of excitation and suppression cannot be explaineal foyltiplicative (factorizable)
model in the mean firing rate domain (data not shown here).

Alternatively, we consider models of the spike count disttion. For each center
and surround stimulus, a spike count distribution is comgity counting in a given time
window the number of stimulus repeats that lead to 0 spikepjke, 2 spikes and so on.

The Morton Massaro model is defined as follows:

_ Cle,r)S(s,m)
P(rle,s) = S Clc, k)S(s, k) (1)

whereP (r|c, s) is the probability of- spikes for centet and surround, C(c, r) represents
the support of the center component, &1ad, ) the support of the surround component.
That is, conditioned on the number of spikeghe response probability can be factorized
into a component dependent on the center, and a componeshdkay on the surround.
This form of model can be understood in the context of a Bayesystem:

P(rle,s) = PlesnP(r) - \we assume conditional independence of center and surround
>y Plesslk)

given the responsepP (c, s|r) = P (c|r) P (s|r); and transform the conditional probabil-
ities P (c|r) P (s|r) into joint probabilitiesP (¢, r) P (s,r) and priorP (r) (equivalently
for the denominator). This effectively yields equation, (kjith the termC(c,r)S(s,r)
absorbing both the joint probabilities and prior.
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We examine a control model for comparison:

~ CO(e,r)+S(s,7)
Prles) = s~ G k) + S, F) @

with the same number of parameters as the Morton Massarolmode

We also introduce a parametric model, the Gaussian logrstidel, in which the spike
count distribution for centet and surrounds is given by a Gaussian distribution passed
through a logistic nonlinearity:

R(s,c) = logistic(X(s) + X(c)) (3)

whereX (s) ~ N (u(s);0), andX (c) ~ N (u(c); o) are Gaussian distributions with mean
w and standard deviatios; andlogistic(Y) = 1/(1 4+ exp(—(Y — 0) % «)) includes
thresholdd and gaina. Thus, the mean of the input to the logistic function changils

c ands. Also, the logistic function defined for values between 0 ands scaled to go
between 0 and the maximal number of spike counts.

Note that this formulation does not include the number dkespias a free parameter.
Therefore, equation (3) is not conditioned on the numbemiKes, as are equations (1)
and (2). In addition, one can prove from the properties of asSian distribution that this
simplified model adheres to Morton Massaro factorizabilMgvertheless, the parametrized
model is more constrained and does not necessarily engafuthcapabilities of Morton
Massaro. For this data set and up to 9 spikes, there are b%dradata points, 81 free
parameters in the Morton Massaro and Control models, andldfree parameters in the
Gaussian logistic model.

Results

We fit each of the V1 neurons with the Morton Massaro, the oyrdnd the Gaussian logis-
tic model. Figure 1 depicts the V1 spike count distributionl @stimated Gaussian logistic
model fit for an example neuron. The logistic function pr@gé nonlinear distortion of the
initial Gaussian distribution. For example, when a Gaumsdiatribution is passed through
a logistic nonlinearity, low values of the distribution greshed towards zero, resulting in
higher kurtosis. This property is apparent in the data, aalll @aptured by the Gaussian
logistic model (also by the more general Morton Massaro mage [7]).

Another aspect of interest is whether the models can captesn firing rate nonlin-
earities. From the model fits of the spike count distributione can compute the mean
tuning curves. Figure 2 plots the mean tuning curves and hfibgléor the example neuron
for the sustained and onset response. The tuning curvedatedpin polar coordinates
along an isoluminant plane, in which the radius correspdndte strength of the mean
spike rate. Each polar plot compares the response of theméarra color surround versus
a gray surround. Both factorizable models account for ttetagued response, in which
there is suppression for center matching the color surroMimgdton Massaro also captures
the nonlinearity apparent at the onset, including both seggion as before, and excitation
for center opposite the color surround. For comparisongctregrol model with the same
number of free parameters as Morton Massaro cannot accoutttd mean tuning curve
data.

We also compare the Chi-square values of the 20 V1 neuronbdatifferent models
for the onset and sustained response. Figure 3 shows sphaterof the normalized (by
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Fig. 1: Spike count distribution representation and Gaussiarsfioginodel fit for example
V1 neuron for window 100-200 msec. Each histogram is contpfdea given center and
surround condition. First row corresponds to 8 color cestieruli on neutral gray surround;
second row corresponds to the same stimuli on color surrolrata are given by open
symbols and model fits by solid lines. Error bars are obtafrad bootstrapping.
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Fig. 22 Mean spike counts of data and model fits of example V1 neurop.rdw: mean
tuning curves computed for sustained response (100-200)mBettom row: mean tun-
ing curves computed for onset (50-100 msec). Mean spiketsa@ue calculated from the
estimated spike count distributions in Figure 1, and ptbte tuning curves in polar coor-
dinates along the (L-M,S) plane. Data are given by open sysrdoad model fits by solid
lines. Gray corresponds to neutral gray surround, and ltac&lor surround. Black square
indicates the background color for the color surround cimali Note that for the control
model sustained response, the gray and black lines largeljap.

the degrees of freedom) Chi-square values for all 20 nedarribe different models. One
can set a critical value, signifying significant deviatidram the model. During sustained
response, 2 neurons show significant deviations to the Mdvtassaro model (chi-square
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Fig. 3: Scatter plots of normalized Chi-square values for the 2@oreuas a function of the
different models. Top: sustained response; bottom: orf&etompare across models, we
subtract from each Chi-square value the correspondingdemf freedom, and normalize
the axis between 0 and 1. Y axis always corresponds to naretblMorton Massaro Chi-
square; the X axis corresponds to either the Gaussianio{jeft) or Control model (right).
Points below unit slope line indicate a lower normalized-€dpiare value for the Morton
Massaro model.

test,144 — 81 = 63 degrees of freedonmp, < 0.05); 4 to the Gaussian logistid44 — 13 =
131 degrees of freedonp, < 0.05); and 12 to the control model44 — 81 = 63 degrees
of freedom,p < 0.05). At onset, 5 show significant deviations to the Morton Massa
model; 11 to the Gaussian logistic; and 9 to the control mote¢ Morton Massaro model
performs better than the Gaussian logistic and control fih lthe sustained and onset
response, as seen by the number of significant deviatioddpyamost points falling below
the unit slope line in the scatter plots. Both factorizabledels perform better than the
control model for the sustained response.

Discussion

We have shown that a factorizable operation combining camig surround information per
each number of spikes, as in the Morton Massaro model, canuatéor contextual color
nonlinearities in area V1. In contrast, a control model viitea same number of parame-
ters as Morton Massaro could not explain the data. Thes#sesiggest that the number
of spikes might play an important role in neural represémat and that factorizable cod-
ing conditioned on the number of spikes might constitute rrega principle for cortical
processing.

The Gaussian logistic model offers a step forward towarisitng about neural im-
plementations. However, although the Gaussian logistidehoonforms to spike count
distribution factorizability, it is more constrained irs itomputation per number of spikes.
In practice, it could not account as well for the combinatidrexcitation and suppression
often apparent at early stages of the response. We areigatesy in greater detail those
cases in which there are significant deviations from the ndaeviations from the model
might occur if the classical receptive field was underedimha@xperimentally. We are also
examining variations of the parametric model, and how tmaigght relate to divisive nor-
malization models that have been proposed for the mean faibege.g., [1, 8]).

This framework for thinking about spike count distributsoand factorizability can be



applied to a number of future directions. In the modelingspective, it will be pertinent
to construct more realistic neural circuitry that can aectdaor the data. Morton Massaro
factorizable codes are often described as feedforwardmloué recent work has demon-
strated that feedback implementations can in fact be demsisvith this form of factoriz-
ability [6]. Additionally, we have tested the model undepttime windows (termed onset
and sustained), but a more complete model ought to accomatnigally for the response
over time. Experimentally, factorizable models should keneined across other stimulus
attributes and neural areas, with the goal of understantfiaggenerality of spike count
factorizability. We have also found that many experimeiittsee include too few stimulus
repeats, or do not explore sufficiently combinations of erntal stimuli—our results em-
phasize the need to increase both. Theoretically, it has beggested that a role of early
sensory processing might be to increase independence éretvegironal responses, when
exposed to natural stimuli (e.g., [9, 10, 11, 12]). The lifigvork presented here and in [7]
suggests an alternative (but not mutually exclusive) motibefficiency: that when condi-
tioning on the number of spikes, external aspects of stimulie world are independent.
These ideas can be explored through statistical analysiatafal scenes.
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