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Dealing with Pose

• Multiple cameras.

• 3D Morphable models.

• Ensemble of pose specific detectors.
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3D Morphable models

Bartlett, Braathen, Littlewort, Smith, Movellan (2001)
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Results FRVT02
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Results FRVT02
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3D Tracking: Current Approaches

• Optic Flow Approaches: Given two images yt and yt+1 and

the position of the object at time t estimate the position of the

object at time t + 1.

? Few assumptions about appearance of object.

? Good knowledge about location of object. Tendency to drift.
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• Template Based Approaches: Given a template of the object

appearance find it on the image plane.

? Few assumptions about location of object.

? Good knowledge of object appearance: Difficult to handle realistic

sources of variation.
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• Template Based Approaches: Given a template of the object

appearance find it on the image plane.

? Few assumptions about location of object.

? Good knowledge of object appearance: Difficult to handle realistic

sources of variation.

In practice people use heuristic combinations of template and flow:

Brand & Bhotika (2001)

Torresani, Yang, Alexander & Bregler (2001)

La Cascia & Sclaroff (2000)

Xiao, Kanade & Kohn (2002)
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GFlow:
A generative model for tracking morphable objects.

• Principled (Optimal Inference).

• Fast.

• Template and flow based approaches emerge as special cases.

• Uses foreground and background information.

• Easy to connect to other generative models (e.g. ICA.).
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Non-Linear Filtering Problem

• Extended Kalman Filter (unimodal).

• Stochastic Partial Differential Equations.

• Discretizing hypothesis space (see dumbicles).

• Sampling (Particle Filters).
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p̂(ut−1 | y1:t−1)
Filtering distribution at t-1
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The Needle in a Haystack Problem
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Problem gets worse with more parameters
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Conditionally Gaussian Problem

Ut ∼ p(Ut |Ut−1) 3D pose and expression

Vt = Vt−1 + Zv
t Object texture

Bt = Bt−1 + Zb
t Background texture

Yt = c(Ut)
(

Vt

Bt

)
+ Wt Image

If we knew u1:t problem would be linear.




