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Let H = (Hy, Hy, - - - ) a stochastic process representing some (hidden) state dynam-
ics, O = (O, O, - - - ) represent some observable dynamics. Let H, = (Ho, -, Hy),
Oy = (Og,---,0¢) for t = 1,2,---. For a fixed sequence = = (x1, 2, --) we let
Ty = (21, -, 2¢). To simplify the presentation we identify probability density func-
tions by their arguments. For example the notation p(o¢|h¢) stands for po, g, (0¢|ht).
Moreover we gloss over differences between continuous and discrete random vari-
ables by accepting’ delta functions as proper probability density functions. The
joint process (H, O) is assumed to have the following Markovian properties:

e System dynamics:
p(he | hi—1,0t—1) = p(hy | he—1) for all hy € R 6,4 € RT™Y, (1)
e Observation dynamics:
p(os | hey0i—1) = plog | hy) for all by € RY, 6, € RE. (2)

0.1 Forward Recursion Equation

Suppose we are given an observation sequence 6 = (01,09, ). Our goal is to get
an estimate of p(h¢ | 0¢) for ¢t = 0,1,---. This would allow us to make inferences
about the hidden process based on the observed sequence. First suppose that we
know p(hi—1 | 6:—1), the following recursion equation allows us to get p(hy | 0;)
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where in the last step we used the Markovian properties of the process.

0.2 Sequential Sampling

We will now use the forward recursion equation to devise a sequential Monte-Carlo
sampling scheme that will give us estimates of p(h; | o;) for all t. We represent
probability estimates using hats (").

Initialization: We get an estimate of p(hg | 0g) by obtaining n ii.d. random

(()1)7 s ,hé") from ppy, and defining

S5y 8(ho — hg”) ploo | b))
PEICTD
Note we are modeling the probability density function pgyo, as a sum of delta
functions (spikes) centered at the m ii.d. samples. Each spike has strength pro-

portional to the posterior probability of the observation given the sampled hidden
state.

samples h,

ﬁ(ho | 00) = for all hg € R. (8)



Recursion: Assuming we have py, |5, , we can get an estimate of py, |5, using
the forward recursion equation:

o Get n iid. samples AV, -+ A" from P, 116, 1

e For each ﬁﬁ?l get a sample h,(f) from pg, a,_, (- | ﬁ?_)l) This results in n
1 ... 50 Ao
samples hy *, -+ hy 0 from py, 6, -

e The estimate of py, |5, is defined as follows
Sy 8(he = i) plor | 1)
S plo| )

p(he | 0r) = for all h; € R. (9)

Notes: The sampling scheme requires we weight delta functions centered at hEi)

by the the value of p(oy | hgz)). In practice we just need a number proportional to
that value. Let w(h¢, 01) = k(ot)p(o¢ | ht) , where the proportionality constant k(o;)
is independent of h;. Then (9) can be modified as follows:
(@) (@)
p(hi | o) = 22 0he = hy) @(ht .0 for all h; € R. (10)
o w(h” 00)
This is of interest since in some cases it is easier to obtain a model of p(h: | o)
than a model of p(o; | ht). For example, neural networks can be trained to provide
estimates of p(h; | o), i.e., for a given input o; to the neural network the output
can be interpreted as an estimate of the posterior probability of the state given the
observation o;. Using Bayes rule we have

p(ot | he) = k(or)w(he, 01), (11)
where

k(o) = p(or), (12)

w(hi,o0r) = p(he | 0r) /p(he)- (13)

Here p(hy | o¢) is provided by the neural network and p(h;) can be interpreted as a
model of the prior probability of the states.

0.3 Importance Sampling

In the previous sampling scheme the samples h,(fl), e ,h§") are taken from
P10, , (| 0t-1). To increase the efficiency of our estimates we may want to sam-
ple from another distribution g;(-) and compensate by multiplying each sample by

ﬁHtIOt_l(' | 6:-1)/9:(-). In particular let

plhe—1 | 0r-1) = D 8(he—y — by ) wioa (b, 01). (14)
Then - .
B(hi |5p-1) = / dhi—1 p(hy | Gr-0)p(he | hea) =Y w(h(?y, 0-1)p(he [ BY}). (15)
=1
Now we sample hgl), e ,h§”) from g;(-) to get
Plhe|0) =Y 6(hy — ) ywe(h{?, or) (16)
where -

wy(h,0) = plog | he)p(he | 01-1)/ge(he)- (17)
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