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Let H = (H0,H1, · · · ) a stochastic process representing some (hidden) state dynam-
ics, O = (O0, O1, · · · ) represent some observable dynamics. Let H̄t = (H0, · · · ,Ht),
Ōt = (O0, · · · , Ot) for t = 1, 2, · · · . For a fixed sequence x = (x1, x2, · · · ) we let
x̄t = (x1, · · · , xt). To simplify the presentation we identify probability density func-
tions by their arguments. For example the notation p(ot|ht) stands for pOt|Ht

(ot|ht).
Moreover we gloss over differences between continuous and discrete random vari-
ables by accepting‘ delta functions as proper probability density functions. The
joint process (H,O) is assumed to have the following Markovian properties:

• System dynamics:
p(ht | h̄t−1, ōt−1) = p(ht | ht−1) for all h̄t ∈ Rt, ōt−1 ∈ Rt−1, (1)

• Observation dynamics:
p(ot | h̄t, ōt−1) = p(ot | ht) for all h̄t ∈ Rt, ōt ∈ Rt. (2)

0.1 Forward Recursion Equation

Suppose we are given an observation sequence ō = (o1, o2, · · · ). Our goal is to get
an estimate of p(ht | ōt) for t = 0, 1, · · · . This would allow us to make inferences
about the hidden process based on the observed sequence. First suppose that we
know p(ht−1 | ōt−1), the following recursion equation allows us to get p(ht | ōt)

p(ht | ōt) =
p(ōt−1)
p(ōt)

p(ot | ht)
∫

dht−1 p(ht−1 | ōt−1)p(ht−1 | ht). (3)

Proof:

p(ht | ōt) =
p(ht, ot, ōt−1)

p(ōt)
=

p(ōt−1)
p(ōt)

p(ht, ot | ōt−1) (4)

=
p(ōt−1)
p(ōt)

∫
dht−1 p(ht, ht−1, ot | ōt−1) (5)

=
p(ōt−1)
p(ōt)

∫
dht−1 p(ht−1 | ōt−1)p(ht | ōt−1, ht−1)p(ot | ōt−1, ht−1, ht) (6)

=
p(ōt−1)
p(ōt)

∫
dht−1 p(ht−1 | ōt−1)p(ht | ht−1)p(ot | ht). (7)

where in the last step we used the Markovian properties of the process.

�

0.2 Sequential Sampling

We will now use the forward recursion equation to devise a sequential Monte-Carlo
sampling scheme that will give us estimates of p(ht | ot) for all t. We represent
probability estimates using hats (ˆ).

Initialization: We get an estimate of p(h0 | o0) by obtaining n i.i.d. random
samples h

(1)
0 , · · · , h

(n)
0 from pH0 and defining

p̂(h0 | o0) =
∑n

i=1 δ(h0 − h
(i)
0 ) p(o0 | h(i)

0 )∑n
j=1 p(o0 | h(j)

0 )
for all h0 ∈ R. (8)

Note we are modeling the probability density function pH0|O0 as a sum of delta
functions (spikes) centered at the n i.i.d. samples. Each spike has strength pro-
portional to the posterior probability of the observation given the sampled hidden
state.



Recursion: Assuming we have p̂Ht−1|Ōt−1
we can get an estimate of p̂Ht|Ōt

using
the forward recursion equation:

• Get n i.i.d. samples h̃
(1)
t−1, · · · , h̃

(n)
t−1 from p̂Ht−1|Ōt−1

.

• For each h̃
(i)
t−1 get a sample h

(i)
t from pHt|Ht−1(· | h̃

(i)
t−1). This results in n

samples h
(1)
t , · · · , h

(n)
t from p̂Ht|Ōt−1

.
• The estimate of pHt|Ōt

is defined as follows

p̂(ht | ōt) =
∑n

i=1 δ(ht − h
(i)
t ) p(ot | h(i)

t )∑n
j=1 p(ot | h(j)

t )
for all ht ∈ R. (9)

Notes: The sampling scheme requires we weight delta functions centered at h
(i)
t

by the the value of p(ot | h(i)
t ). In practice we just need a number proportional to

that value. Let w(ht, ot) = k(ot)p(ot |ht) , where the proportionality constant k(ot)
is independent of ht. Then (9) can be modified as follows:

p̂(ht | ōt) =
∑

i δ(ht − h
(i)
t ) w(h(i)

t , ot)∑n
j=1 w(h(j)

t , ot)
for all ht ∈ R. (10)

This is of interest since in some cases it is easier to obtain a model of p(ht | ot)
than a model of p(ot | ht). For example, neural networks can be trained to provide
estimates of p(ht | ot), i.e., for a given input ot to the neural network the output
can be interpreted as an estimate of the posterior probability of the state given the
observation ot. Using Bayes rule we have

p(ot | ht) = k(ot)w(ht, ot), (11)
where

k(ot) = p(ot), (12)
w(ht, ot) = p(ht | ot)/p(ht). (13)

Here p(ht | ot) is provided by the neural network and p(ht) can be interpreted as a
model of the prior probability of the states.

0.3 Importance Sampling

In the previous sampling scheme the samples h
(1)
t , · · · , h

(n)
t are taken from

p̂Ht|Ōt−1
(· | ōt−1). To increase the efficiency of our estimates we may want to sam-

ple from another distribution gt(·) and compensate by multiplying each sample by
p̂Ht|Ōt−1

(· | ōt−1)/gt(·). In particular let

p̂(ht−1 | ōt−1) =
n∑

i=1

δ(ht−1 − h
(i)
t−1) wt−1(h

(i)
t−1, ot−1). (14)

Then

p̂(ht | ōt−1) =
∫

dht−1 p̂(ht | ōt−1)p(ht | ht−1) =
n∑

i=1

w(h(i)
t−1, ot−1)p(ht | h(i)

t−1). (15)

Now we sample h
(1)
t , · · · , h

(n)
t from gt(·) to get

p̂(ht | ōt) =
n∑

i=1

δ(ht − h
(i)
t )wt(h

(i)
t , ot) (16)

where
wt(ht, ot) = p(ot | ht)p̂(ht | ōt−1)/gt(ht). (17)
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