
Primer on POMDPs and Infomax Control

Copyright c©Javier R. Movellan

Please cite as

Movellan J. R. (2009) Primer on POMDPs and Infomax Control. MPLab Tutorials,
University of California San Diego

1 MDP Finite Horizon Problems

For more detailed specification of the notation standards see the Appendix. We
use a Matlab-style convention to denote sequences. Under this convention xt:T =
(xt, · · · , xT). We use capital letters for random variables and small letters for
specific values taken from those variables. A process is a collection of variables
indexed by t = 1, · · · , T , where T is called the horizon, or terminal time. The
processes of interest are:

• System Process: X = {X1, · · · , XT }. Where the system, or state variables
Xt take values in {1, · · · , nx}

• Action Process: U = {U1, · · · , UT } where the actions Ut take values in
1, · · · , nu}.

• Control Process: C = {C1, · · · , Ct}. Where each Ct : Ht → Ut maps states
into actions.

• Reward Process: R = {R1, · · · , RT }. Where Rt : (Xt, Ut)→ < maps state,
action combinations into real valued numbers.

• Return Process: R̄ = {R̄1, · · · , R̄T }. Where R̄t
def=
∑T
τ=t γ

τ−tRτ , and γ ∈
[0, 1] is called the discount factor.

• Value function for a given controller c: It provides the expected return
given that we visit state xt at time t and use controller c to map states into
actions.

V ct (xt) = E[R̄t | xt, c] (1)

• Optimal value function: It provides the expected return given that we visit
state xt at time t, optimized over possible controllers

Vt(xt) = max
c
E[R̄t | xt, c] (2)

• State/Action value function under controller c:

V ct (xt, ut) = E[R̄t | xt, ut, c] (3)

Note we are overloading the symbol for function V c and identifying the
function by the number of arguments.

• Optimal state/action value Function:

Vt(xt, ut) = max
c
E[R̄t | xt, ut, c] (4)

• Generative Model (See Figure 1).
(Xt, Ct) generate Ut.
(Xt, Ut) generate (Rt, Xt+1).

• System matrices: a = {a1, · · · , anu}, where au is an nx × nx matrix with

aui,j = p(Xt+1 = j |Xt = i, Ut = u) (5)

• Reward vectors: rut is an nx dimensional vector such that

rut,i = E[Rt |Xt = i, Ut = u] (6)

Remark 1.1. Alternative Conventions: Some documents (e.g., Thrun Probabilistic
Robotics) use the convention that Ct maps Xt into Ut+1. This does not affect the
main results presented here, except for the shift in notation.

Figure 1: Graphical Represen-
tation of a time slice of the pro-
cess under study. Arrows rep-
resent dependency relationships
between variables. An arrow
from variable X to variable Y
indicates that X is a “parent
variable” of Y .

 Xt Xt+1 System
Process

Controller

 Ut Ct

 Rt
Reward Process

Action

Our goal is to find a controller c that maximizes the return. While this appears as
a difficult optimization problem it has rich structure that allows solving it in a rel-
atively efficient manner. Key to this solution is the Optimality Theorem, described
below. To prove that theorem we will first need a lemma that tells us a condition
under which the maximum of a sum of function equal the sum of the maxima.
Lemma 1.1 (Max Sum Lemma). Let wi ≥ 0, for i = 1, · · · , n and let x̂ maximize
fi(x) for i = 1, · · · , n, i.e.,

fi(x̂) = max
i
fi(x) (7)

for i = 1, · · · , n. Then

max
x

∑
i

wifi(x) =
∑
i

wifi(x̂) (8)

Proof. Since wi ≥ 0 it follows that

max
x

∑
i

wifi(x) ≤
∑
i

max
x

wifi(x) =
∑
i

wifi(x̂) (9)

Moreover, by definition of the maximum operation, it follow that for any value u

max
x

∑
i

wifi(x) ≥
∑
i

wifi(u) (10)

Thus, choosing u = x̂,

max
x

∑
i

wifi(x) ≥
∑
i

wifi(x̂) (11)

Theorem 1.1 (Optimality Theorem). Let ĉt+1:T be a controller that maximizes
E[R̄t+1 | xt+1, ct+1:T] for all xt+1, i.e.,

E[R̄t+1 | xt+1, ĉt+1:T] = max
ct+1:T

E[R̄t+1 | xt+1, ct+1:T] = Vt+1(xt+1) (12)

for xt+1 = 1, · · · , nx. Let wi ≥ 0 for i = 1, · · ·nx. Then

max
ct+1:T

nx∑
i=1

wiE[R̄t+1 |Xt+1 = i, ct+1:T] =
nx∑
i=1

wiE[R̄t+1 |Xt+1 = i, ĉt+1:T] (13)

Proof. It follows from the Max Sum Lemma using

x
def= ct+1:T (14)

fi(x) def= E[R̄t+1 |Xt+1 = i, ct+1:T] (15)

Corollary 1.1 (Bellman Equation for Optimal State/Value Function).

Vt(xt, ut) = E[Rt | xt, ut] + γE[V (Xt+1) | xt, ut] (16)

Proof.

Vt(xt, ut)
def= max

ct+1:T
E[R̄t | xt, ut, ct+1:T] (17)

= E[Rt | xt, ut] + max
ct+1:T

E[R̄t+1 | xt, ut, ct+1:T] (18)

where we used the fact that R̄t = Rt + γR̄t+1 and the fact that Rt is conditionally
independent of ct+1:T given xt, ut. Now note

E[R̄t+1 | xt, ut, ct+1:T] =
nx∑
i=1

p(Xt+1 = i | xt, ut)E[R̄t+1 |Xt+1 = i, ct+1:T] (19)

where we used the facts that

p(Xt+1 = i | xt, ut, ct+1:T) = p(Xt+1 = i | xt, ut) (20)

and the fact that

E[R̄t+1 |Xt+1 = i, ut, ct+1:T] = E[R̄t+1 |Xt+1 = i, ct+1:T] (21)

Thus, using the Optimality Theorem with wi = p(Xt+1 = i | xt, ut) it follows that

max
ct+1:T

E[R̄t+1 | xt, ut, ct+1:T] =
nx∑
i=1

p(Xt+1 = i | xt, ut)E[R̄t+1 |Xt+1 = i, ĉt+1:T]

=
nx∑

xt+1=1

p(xt+1 | xt, ut)Vt+1(xt+1) = E[V (Xt+1) | xt, ut] (22)

Corollary 1.2 (Bellman Equation for Optimal Value Function).

Vt(xt) = max
ut

Vt(xt, ut) (23)

Proof.

Vt(xt)
def= max

ct

max
ct:T

E[R̄t | xt, ct, ct+1:T] (24)

= max
ut

E[R̄t | xt, ut, ĉt+1:T] = max
ut

Vt(xt, ut) (25)

where we used the fact that when xt is fixed, the controller ct determines ut, thus
optimizing with respect to ct(xt) for a fixed xt is the same as optimizing with respect
to ut.

Corollary 1.3 (Bellman Equation for a Fiexed Controller).

V c(xt) = E[Rt + γ V ct+1(Xt) | xt, ut] (26)

Proof. First consider the case in which the admissible control laws are of the form

Ut = Ct(Xt) ∈ Ct(Xt) (27)

where Ct(xt) is a set of available actions when visiting state xt at time t. This can
be seen as a special case of the optimal control problem that happens to have have
a large negative constant added to the reward function when using inadmissible
actions. Thus

V (xt) = max
ut∈Ct(xt)

E[Rt + γ Vt+1(Xt) | xt, ut] (28)

To get the value of a fixed controller c simply restrict the set Ct(xt) = {ct(xt)} and
apply (28)

V ct (xt) = E[Rt + γV ct+1(Xt+1) | xt, c] (29)

Corollary 1.4 (Optimal Controller). The optimal action at time t given that
we are at state xt is as follows1

ĉt(xt) argmax
ut

Qt(xt, ct) (30)

Proof.

ĉt(xt)
def= argmax

ut

max
ct+1:T

E[R̄t | xt, ct:T] = argmax
ct

Qt(xt, ct) (31)

Remark 1.2 (Backpropagation Algorithm for MDPs). This suggests a useful
method for finding optimal controllers: First we get the QT , VT functions and the
optimal controller ĉT for the terminal time T :

VT (xT , uT) = E[RT | xT , uT] (32)
VT (xT) = max

uT

QT (xT , uT) (33)

ĉT (xT) = argmax
uT

QT (xT , uT) (34)

We can then use the Bellman Equations to find the optimal value functions and
optimal controllers

VT1(xT−1, uT−1) = E[RT−1 | xT−1, uT−1] + γ
∑
xT

p(xT | xT−1, uT−1)VT (xT) (35)

VT−1(xT−1) = max
uT−1

VT−1(xT−1, uT−1) (36)

ĉT (xT) = argmax
uT−1

VT−1(xT−1, uT−1) (37)

(38)

The process can be iterated backwards in time down to any desired time t to find
the optimal control law ĉt:T

vuT = ruT , for u = 1, · · · , nu.
vi,T = max

u
vui,T , for u = 1, · · · , nu, i = 1, · · · , nx.

vut = rut + auvt+1, for t = T − 1, · · · , 1, u = 1 · · · , nu.
vi,t = max

u
qui,t for t = T − 1, · · · , 1, u = 1 · · · , nu, i = 1, · · · , nx.

Figure 2: The backpropagation dynamic programing algorithm for computing the
optimal value functions and optimal controller in MDPs. The rut , v

u
t , vt terms are

nx dimensional vectors.

Remark 1.3 (Assumptions). It is useful to clarify the assumptions made to prove
the optimality principle and the Bellman Optimality Equations.

• Assumption 1:
E[Rt | xt, ct:T] = E[Rt | xt, ct] (39)

• Assumption 2:

p(xt+1 | xt, ct, ct+1:T) = p(xt+1 | xt, ct) (40)

• Assumption 3:

E[R̄t+1 | xt, ct, xt+1, ct+1:T] = E[R̄t+1 | xt+1, ct+1:T] (41)

• Assumption 4: Most importantly we assumed that the optimal controller
ĉt+1:T did not impose any constraints on the set of policies ct with respect
to which we were performing the optimization. This would be violated, if
there were an additional penalty or reward that depended directly on ct:T .
For example, this assumption would be violated if we were to force the
policies of interest to be stationary. This would amount to putting a large
penalty for policies that do not satisfy c1 = c2 = · · · cT−1.

Remark 1.4 (Transition Dependent Rewards). In some problems the reward Rt
may be a function of Xt, Xt+1, Ut. Note this does not brake any of the assump-
tions and so the Bellman equations hold. In cases like this it would probably be a
good idea to change the notation so Rt would be referred to as Rt+1 to reflect the
dependency on variable that is generated at time t+ 1.

2 Partially Observable Processes: Finite Horizon

In addition to the processes defined in the fully observable case we have the following
additional processes

• Sensor Process: Z = {Z1, · · · , ZT }. Where the sensor measurements Zt
take values in {1, · · · , nz}
• Observation History: Ht = (Z1:t, U1:t−1)

1We use the term argmaxx f(x) in an informal sense to signify any value that globally
maximizes f , i.e., if x̂ = argmax f(x) then f(x̂) = max f(x).

• Control Process: C = {C1, · · · , Ct}. In this case the controller does not
have access to the system variables. Instead at each time step t the con-
troller Ct : Ht → Ut maps the available information into actions.

• Generative Model (See Figure 6).

(Ht, Ct) generate Ut.
(Xt, Ut) generate (Rt, Xt+1, Zt+1).
(Ht, Ut, Zt+1) generate Ht+1.

• Sensor matrices: bu = {b1, · · · , bnu}, where bu is an nx × nz matrix with

bui,j = p(Zt = j |Xt = i, Ut = u) (42)

Figure 3: Graphical Represen-
tation of the a time slice of the
process. Arrows represent de-
pendency relationships between
variables. An arrow from vari-
able X to variable Y indicates
that X is a parent of Y . The
probability of a random variable
is conditionally independent of
all the other variables given the
parent variables. Dotted figures
indicate unobservable variables,
continuous figures indicate ob-
servable variables.

Sensor
Process Zt

 Xt Xt+1System
Process

Action
ProcessController

Information
History

 Ut Ct

Ht = (Z1:t,U1:t−1)

Zt+1 Rt

2.1 Equivalence with Fully Observable Case

The goal in a finite horizon POMPD problem is to find control policies c that map
the observable history into actions in an optimal manner. Here optimality is defined
with respect to a reward process Rt(Xt, Ut)

V ct (ht) = E[R̄t | ht, c] (43)

It turns this optimization problem is an MDP problem with respect to the infor-
mation state. Note Ht satisfies the necessary assumptions

• Assumption 1:
E[Rt | ht, ct:T] = E[Rt | ht, ct] (44)

• Assumption 2:

p(ot+1 | ht, ct, ct+1:T) = p(ot+1 | ht, ct) (45)

• Assumption 3:

E[R̄t+1 | ht, ct, ht+1, ct+1:T] = E[R̄t+1 | ht+1, ct+1:T] (46)

2.2 Sufficient Statistics

While it is useful to know that POMPDs are MDPs with respect to the information
state, the problem is that the number of information grows exponentially with the
horizon T . For example if at each time we can get a binary sensory value Zt and
a binary actuator value Ut then by time T there is total of 4T possible states.
Fortunately in some cases one may find a sufficient statistic St of Ht that does not
loose the relevant information about Ht. To be usable, such a statistic would need
to satisfy the conditions of the following theorem.
Theorem 2.1 (Sufficient Statistics). Let St be a random variable satisfying the
following conditions:

• Assumption 1: It is a function of Ht

St = f1
t (Ht) (47)

• Assumption 2: It is recursive:

St+1 = f2
t (St, Ut, Zt+1) (48)

• Assumption 3: The expected reward given ht, ut is function of st, ut

E[Rt | ht, ut] = f3
t (st, ut) (49)

where st
def= f1

t (ht)

• Assumption 4: The distribution of sensor measurements given ht, ut is a
function of st, ut

p(zt+1 | ht, ut) = f4
t (zt+1, st, ut) (50)

where st
def= f1

t (ht)

Then the optimal controller given Ht is the same as the optimal controller given St.

Proof. First we show that at terminal time T we can recover VT (ht, ut) using a
function ṼT of st, ut. For a fixed hT let sT

def= f1
T (hT) and note

VT (hT , ut) = E[Rt | hT , uT] = f3
T (sT , uT) (51)

Let

ṼT (sT , ut)
def= f3

T (sT , uT) = VT (hT , ut) (52)

The same argument can be used to show that VT (ht) and the optimal action ĉt(ht)
are functions of st

ṼT (st)
def= max

uT

ṼT (st, ut) = VT (hT) (53)

c̃T (st)
def= ĉT (ht) = argmax

uT

ṼT (st, ut) (54)

Now assume for time t + 1, the optimal value of an information state ht can be
recovered from the statistic st+1

def= f1t+ 1(ht+1), i.e., there is a function Ṽt+1 such
that

Ṽt+1(st+1) def= Vt+1(ht+1) (55)

We will now show that if this assumption holds, then the optimal value and the
optimal actions at time t for every information state ht can be computed from their

sufficient statistic st
def= f1

t (ht). Let ht be an arbitrary
sample of Ht and st its sufficient statistic, i.e., st = f1

t (ht). Using Bellman’s
equation we get

Vt(ht, ut) = E[Rt | ht, ut] + γ
∑
ht+1

p(ht+1 | ht, ut)Vt+1(ht+1) (56)

where

p(ht+1 | ht, ut) =
∑
zt+1

p(ht+1, zt+1 | ht, ut, zt+1)

=
∑
zt+1

p(zt=1 | ht, ut)p(ht+1 | ht, ut) (57)

Note ht, ut, zt+1 determine the information history at time t+ 1, i.e.

p(ht+1 | ht, ut, zt+1) = δ(ht+1, f
1
t (ht, ut, zt+1)) (58)

p(ht+1 | ht, ut) =
∑
zt+1

p(zt+1 | ht, ut)δ(ht+1, f
1
t (ht, ut, zt+1)) (59)

Thus

Vt(ht, ut) = E[Rt | ht, ut] + γ
∑
zt+1

p(zt+1 | ht, ut)Vt+1(f1
t (ht, ut, zt+1)) (60)

= E[Rt | st, ut] + γ
∑
zt+1

p(zt+1 | st, ut)Ṽt+1(f2
t (st, ut, zt)) (61)

which is a function of st, ut, i.e.

Ṽt(st, ut)
def= Vt(ht, ut) = E[Rt | st, ut] + γ

∑
zt+1

p(zt+1 | st, ut)Ṽt+1(f2
t (st, ut, zt))

(62)

and

Ṽt(st)
def= Vt(ht) = max

ut

Q̃t(st, ut) (63)

c̃t(st)
def= ĉt(ht) = max

ut

Q̃t(st, ut) (64)

(65)

Thus, starting at T and moving backwards in time, we can compute all the necessary
value functions and optimal actions for each possible information state ht using just
the sufficient statistic of ht.

Theorem 2.2 (Controller Given the Posterior State Distribution). The
optimal controller given the information history ht is equivalent to the optimal con-
troller given the posterior distribution p(xt | ht).

Proof. We just need to show that the posterior distribution satisfies the assumption
of the Sufficient Statistics Theorem.

• The posterior distribution is a function of the information history. This is
obviously true since

p(xt | ht) = f1
t (ht) (66)

• The posterior distribution is a recursive function. For a fixed ht, ut, zt+1

let ht+1
def= f2

t (ht, ut, zt+1). Thus

p(xt+1 | ht+1) = p(xt+1 | ht, ut, zt+1) =
p(xt+1, zt+1 | ht, ut)
p(zt+1 | ht, ut)

(67)

where

p(xt+1, zt+1 | ht, ut) =
∑
xt

p(xt, xt+1, zt+1 | ht, ut)

=
∑
xt

p(xt | ht)p(xt+1 | xt, ut)p(zt+1 | xt+1, ut)

=
∑
xt

p(xt | ht)aut
xt,xt+1

but
xt+1,zt+1

(68)

and

p(zt+1 | ht, ut) =
∑
xt+1

p(xt+1, zt+1 | ht, ut)

=
∑
xt

p(xt | ht)
∑
xt+1

aut
xt,xt+1

but
xt+1,zt+1

(69)

Thus

p(xt+1 | ht+1) =
p(xt | ht)

∑
xt+1

aut
xt,xt+1

but
xt+1,zt+1∑

xt
p(xt | ht)

∑
xt+1

aut
xt,xt+1b

ut
xt+1,zt+1

(70)

is a function of p(xt | ht), ut, zt+1

• The expected reward is a function of the posterior distribution. This is
obviously true since

E[Rt | ht, ut] =
∑

p(xt | ht)R(xt, ut) (71)

• The distribution of sensor measurements is a function of the posterior dis-
tributions. This is evident in equation (69).

2.3 Backpropagation Algorithm for POMDPs

We will follow the convention that Xt, Ut cause the state Xt+1. The state Xt+1 and,
possibly, the action Ut cause the observation Zt+1. Let nx, nu, nz be the number of
possible states, actions, and observations. Let Ht be the observable history up to
time t, i.e,

Ht = (Z1:t, U1:t−1) (72)

and Qt represent the posterior probability of the states given the observations avail-
able up to that time, i.e.,

qi,t = p(Xt = i | ht) (73)

Hereafter we refer to Qt as the information state at time t. Given an information
state qt our goal is to find a controller that maps information states for all time steps
q into actions so as to optimize the accumulation of reward over a finite period of
time. The value of an information state qt given a controller c, is defined as follows

V ct (qt) = E[R̄t | qt, c] (74)

where

R̄t
def=

T∑
τ=t

γτ−tRτ (75)

and Rt is a function of Xt, Ut. The case in which Rt is also a function of Xt−1 can
be handled as described in Remark 1.4. Let

auij
def= p(Xt+1 = j |Xt = i, Ut = u) (76)

buij
def= p(Zt+1 = j |Xt+1 = i, Ut = u) (77)

(78)

Let buz be a diagonal matrix whose ith diagonal elements is bui,z, i.e,

buz
def= diag(bu.,z) (79)

Let

rui,t = Rt(i, u) (80)

Let

hj(qt, u, z)
def= p(Xt+1 = j, Zt+1 = z | qt, Ut = u) (81)

Thus

hj(qt, u, z) =
nx∑
i=1

qi,t a
u
i,j b

u
j,z (82)

or in vector form

h(q, u, z) = q′aubuz (83)

Let

fj(qt, u, z)
def= p(Xt+1 = j | qt, Ut = u, Zt+1 = z) (84)

Thus

fj(qt, u, z) =
hj(qt, u, z)

p(Zt+1 = z | qt, Ut = u)
(85)

where

p(Zt+1 = z | qt, Ut = u) =
nx∑
j=1

hj(qt, u, z) (86)

We now note that the transition probability between information states is a sum of
delta functions

p(qt+1 | qt, ut) =
∑
zt+1

p(zt+1 | qt, ut)δ(qt+1, f(qt, ut, zt+1)) (87)

where δ is the Kronecker delta function

δ(u, v) =
{

1 if u = v

0 else
(88)

and

f(q, u, z) =
(
f1(q, u, z), · · · , fnx

(q, u, z)
)′

(89)

Let Vt(qt, ut) the optimal value of the belief qt and action ut at time t, i.e.,

Vt(qt, ut) = q′rut + γ
∑
qt+1

p(qt+1 | qt, ut)Vt+1(qt+1) (90)

where Vt+1 is the optimal value function at time t+ 1, and γ is the discount factor.
Thus

Vt(qt, ut) = q′rut + γ
∑
qt+1

∑
zt+1

p(zt+1 | qt, ut)δ(qt+1, f(qt, ut, z))Vt+1(qt+1) (91)

= q′rut + γ
∑
zt+1

p(zt+1 | qt, ut) Vt+1(f(qt, ut, zt+1))

We will now assume (and later prove) that there is a matrix wt+1 such that

Vt+1(q) = max(q′wt+1) (92)

Let mt+1 be the number of columns of wt+1. Note q′wt+1 is an mt+1 dimensional
row vector. The max operator simply chooses an element of this vector that is not
smaller than any other element of the vector.

In such case, for all α ∈ <
Vt+1(αq) = αVt+1(q) (93)

Thus

Vt(qt, ut) = q′rut + γ
∑
zt+1

Vt+1(p(zt+1 | qt, ut)f(qt, ut, zt+1)) (94)

= q′rut + γ

nz∑
z=1

Vt+1(h(qt, ut, z)) (95)

which under assumption (92) simplifies as follows

Vt(qt, ut) = q′rut + γ

nz∑
z=1

max(h(qt, ut, z))w) (96)

= q′rut + γ

nz∑
z=1

max(q′aubuzwt+1) (97)

and using Lemma 4.2 (sum of max is max of cross sums)

Vt(q, u) = q′rut + γmax
(
q′

nz⊕
z=1

aubuzwt+1

)
(98)

= max(q′wut) (99)

where

wut
def=
(nz⊕
z=1

γaubuzwt+1

)
⊕ rut (100)

wT+1 = (0, · · · , 0)′ ∈ <nx

For t = T, T − 1 · · · , 1

ku,zt
def= audiag(b.,z), for u = 1, · · ·nu and z = 1 · · ·nz

wu,zt
def= γku,zt wt+1, for u = 1, · · ·nu and z = 1 · · ·nz

wut
def= rut ⊕ w

u,1
t ⊕ · · · ⊕ wu,nz

t , for u = 1, · · ·nu

wt =
(
w1
t , · · ·w

nu
t

)
Vt(q, u) = max

cols
q′wut , for u = 1, · · ·nu

Vt(q) = max
u

Vt(q, u);

Figure 4: The backpropagation dynamic programing algorithm for computing the
optimal value functions and optimal controller in POMDPs.

Note the cross sum operator ⊕ and its properties are described in the Appendix.
Thus

Vt(q) = max
u

Vt(q, u) = max
u

max(q′wut) = max(q′wt) (101)

where wt is a column-wise concatenation of the wut matrices, i.e.,

wt
def=
(
w1
tw

2
t · · ·w

nu
t

)
(102)

Thus we have shown that if assumption (92) is true for time t+ 1 then it must also
be true for time t. In addition equations (100) and (102) tell us how to construct
the weight matrix wt given the weight matrix wt+1. Now note that for t = T

VT (q, u) = q′ruT (103)

VT (q) = max
u

VT (q, u) = max(q′wT) (104)

wT
def=
(
r1T · · · r

nu

T

)
(105)

thus this shows, by induction, that assumption (92) is correct and provides a method
to compute the value function starting at T and going all the way back to t.

Note for time T wT = (r1T · · · r
nu

T) has nu columns. For time t we have nu wut
matrices. For each wut we cross sum nz matrices each with as many columns as the
number of columns in wt this gives a total of nnz

t+1 columns, where nt+1 represents
the number of columns in wt+1. For each wut we cross sum rut , which is a vector
so it does not increase the number of columns. wt concatenates the wut matrices.
Thus the wut matrix has nt = (nnz

t+1) ∗ nu. Suppose nu = 2, nz = 2, then nT = 2,
nT−1 = (22) ∗ 2 = 8, nT−2 = (82) ∗ 2 = 128, etc.

3 Infomax Control

In some problems of interest the goal is to act in a manner that provides the most
information about the state of the world. In such cases it is useful to use the

entropy of the posterior distribution as a component of the reward function. The
Renyi entropy of order α ≥ 0 is defined as follows (I need to check the paper Blind
Source Separation Using Renyi’s mutual information)

Hα(p) =
1

1− α
log(

∑
x

pα(x)) (106)

It can be shown that in the limit as α→ 1 Hα converges to the Shannon Entropy

lim
α→1

Hα(p) =
∑
x

p(x) log p(x) (107)

Moreover

H∞(p) = lim
α→∞

Hα(X) = − log
(

max
x

p(x)
)

(108)

We can adapt the backpropagation algorithm to solve infomax problems by using

exp(−H∞(qt)) = max
x

qt(x) (109)

as a component of the reward function. To this end we let the instantaneous reward
associated with action u when in information state q is a follows(∑

x

qtRt(x, u)
)

+ λmax
x

qt(x) (110)

for a parameter λ ≥ 0 that controls the relative importance of the entropy term. In
this case (91) takes teh following form

Vt(qt, ut) = q′rut + maxλq′ + γ
∑
zt+1

p(zt+1 | qt, ut) Vt+1(f(qt, ut, zt+1)) (111)

We assume (and later prove) that there is a matrix wt+1 such that

Vt+1(q) = max(q′wt+1) (112)

Following the same steps as in (94) to (98) we get

Vt(q, u) = q′rut + max q′λI + γmax(q′
nz⊕
z=1

aubuzwt+1) = max(q′wut) (113)

where I is an nx × nx identity matrix and

wut =
(nz⊕
z=1

γaubuzwt+1

)
⊕ rut ⊕ λI (114)

Thus

Vt(q) = max
u

Vt(q, u) = max
u

max(q′wut) = max(q′wt) (115)

where wt is the column-wise concatenation of the wut matrices

wt = (w1
t · · ·w

nu
t) (116)

All is left is to show that assumption (92) is true for time T . Note

VT (q, u) = q′ruT + λmax(q′) (117)

Thus

VT (q) = max(q′rt) + max(q′λI) = max q′wT (118)

wT+1 = (0, · · · , 0)′ ∈ <nx

For t = T, T − 1 · · · , 1

ku,zt
def= audiag(b.,z), for u = 1, · · ·nu and z = 1 · · ·nz

wu,zt
def= γku,zt wt+1, for u = 1, · · ·nu and z = 1 · · ·nz

wut
def= λI ⊕ rut ⊕ w

u,1
t ⊕ · · · ⊕ wu,nz

t , for u = 1, · · ·nu

wt =
(
w1
t , · · ·w

nu
t

)
Vt(q, u) = max

cols
q′wut , for u = 1, · · ·nu

Vt(q) = max
u

Vt(q, u);

Figure 5: The backpropagation dynamic programing algorithm for Infomax Control
in POMDPs.

where

wT = rT ⊕ λI (119)

rT = (r1T · · · r
nu

T) (120)

Note for time T we have nu matrices wuT . Each wuT = ruT ⊕ Inx
has nx columns.

Thus wT has nu × nx columns. For time t we have nu matrices wut . For each wut
we cross sum nz matrices each with as many columns as the number of columns in
wt this gives a total of nnz

t+1 columns, where nt+1 represents the number of columns
in wt+1. For each wut we cross the Inx thus the number of columns for each is
(nnz
t+1)nx. For each wut we cross sum rut , which is a vector so it does not increase

the number of columns. wt concatenates the wut matrices.

Thus the wut matrix has nt = (nnz
t+1)nxnu. Suppose nu = 2, nz = 2, then nT = 4,

nT−1 = (42) ∗ 4 = 64, nT−2 = (642) ∗ 4 = 16384, etc.

3.1 A Counterintuitive Example

Consider the following case: There are two internal states, two actions and two
observations. The state transition probability is the identity matrix

au = I for u = 1, 2 (121)

The first action provides no information about the state

b1.z =
(

0.5
0.5

)
for z = 1, 2 (122)

where I is the identity matrix. The second action provides information about the
state

b2·1 =
(

0.9
0.1

)
(123)

b2·2 =
(

0.1
0.9

)
(124)

If we choose action 2 and we get observation 1, then this indicates that the system
is likely to be in state 1. If we choose action 2 and get observation 2, then it is
likely to be in state 2. At time t the controller has a belief state qt then it chooses
one of the two actions. The total reward is the max value of the components of qt
plus the max value of the components of qt+1. This is related to the limit Renyii
entropy with parameter α
to∞. It also corresponds to the the probability of correctly guessing the state at
time t plus the probability of correctly guessing the state at time t+ 1. Using (??)
we get

V1(qt, u) = max qt +
∑
zt+1

p(zt+1 | qt, ut) max
xt+1

p(xt+1 | qt, zt+1) (125)

= max qt +
∑
zt+1

max
xt+1

p(zt+1 | qt, ut) p(xt+1 | qt, zt+1) (126)

= max qt +
∑
zt+1

max
xt+1

p(xt+1, zt+1 | qt, ut) (127)

Note for Ut = 1

p(Zt+1 = 1, Xt+1 = 1 | qt, Ut = 1) = q1ta11b
1
11 + q2ta21b

1
11 = qt10.5 (128)

p(Zt+1 = 2, Xt+1 = 1 | qt, Ut = 1) = q1ta11b
1
12 + q2ta21b

1
12 = q1t0.5 (129)

p(Zt+1 = 1, Xt+1 = 2 | qt, Ut = 1) = q1ta12b
1
21 + q2ta22b

1
22 = q2t0.5 (130)

p(Zt+1 = 2, Xt+1 = 2 | qt, Ut = 1) = q1ta12b
1
22 + q2ta22b

1
22 = q2t0.5 (131)

Thus

V (qt, 1) = (max qt) + 0.5 max{q1t, q2t}+ 0.5 max{q1t, q2t} = 2 max qt (132)

Thus if we choose the uninformative action, the probability of being correct at time
t equals the probability of being correct at time t + 1. The total reward is simply
twice the probability of being correct given the prior belief qt. For Ut = 2

p(Zt+1 = 1, Xt+1 = 1 | qt, Ut = 2) = q1ta11b
2
11 + q2ta21b

2
11 = q1t0.9 (133)

p(Zt+1 = 2, Xt+1 = 1 | qt, Ut = 2) = q1ta11b
2
12 + q2ta21b

2
12 = q1t0.1 (134)

p(Zt+1 = 1, Xt+1 = 2 | qt, Ut = 2) = q1ta12b
2
21 + q2ta22b

2
21 = q2t0.1 (135)

p(Zt+1 = 2, Xt+1 = 2 | qt, Ut = 2) = q1ta12b
2
22 + q2ta22b

2
22 = q2t0.9 (136)

Thus

V (qt, 1) = max qt + max{q1t0.9, q2t0.1}+ 0.5 max{q1t0.1, q2t0.9} (137)

Consider the case in which we start with uninformative priors i.e., qt = (0.5, 0.5)′.
In this case

V (qt, 1) = 2× 0.5 = 1 (138)
V (qt, 2) = 0.5 + 0.5 max{0.9, 0.1}+ 0.5 max{0.1, 0.9} (139)

= 0.5 + 0.9 = 1.4 > V (qt, 1) (140)

Thus, not surprisingly, in this case the optimal strategy is to choose the most
informative action. Consider now the case for which qt = (0.9, 0.1). In this case

V (qt, 1) = 2× 0.9 = 1.8 (141)
V (qt, 2) = 0.9 + max{0.81, 0.01}+ max{0.09, 0.09} (142)
= 0.90 + 0.81 + 0.09 = 1.8 = V (qt, 1) (143)

Thus, surprisingly, in this case it does not matter which action we take, the infor-
mative action is as good as the uninformative action.

3.2 Point Based Approximations

A problem with the algorithm described above is that the weight matrix wt can
grow very large. In particular if wt+1 has mt+1 rows, then wt will have nu ×mnz

t+1.
In practice many of these columns may be irrelevant since they may never be picked
by the max operator. Note if a column of wt is never picked up by the max operator,
it may be pruned out without any loss of information thus potentially mitigating
the growth of wt. In addition, a common approach is to focus on a finite set of
information states q rather than in all possible states. Such an approach goes by
the name of point based POMDP approximations.

3.3 Policy Gradient Methods

In policy gradient methods the controller is parameterized and we attempt to find
values of the parameter that optimize a utility function. Here we will focus on the
finite horizon case but the approach can be easily generalized for infinite horizon
problems. Let θ represent the parameters of a controller i,e. for each θ there is a
probability distribution that maps belief states into actions. Let

Φ(θ) = E[r(Q,Z,U)] (144)

where Q = Q1:T is the belief process is determined by the observation process
Z = Z1:T and the action process U = U1:T . Note we let the reward r depend on
the observable processes in a manner that may or may not be additive across time
steps. Our goal is to find values of θ that maximize Φ. Note

Φ(θ) =
∫
p(q, z, u)r(q, z, u) dq dz du (145)

where q = q1:T , z = z1:T , u = u1:T . We will employ stochastic gradient descent
methods to maximize Φ. Note

∇θΦ =
∫
r(q, z, u) ∇θp(q, z, u) dq dz du

=
∫
r(q, z, u) p(q, z, u) ∇θ log p(q, z, u) dq dz du (146)

Thus we can approximate the gradient by getting n samples from the observable
processes {(q(i), z(i), u(i)) : i = 1, · · ·n}

∇θΦ ≈
1
n

n∑
i=1

r(q(i), z(i), u(i)) ∇θ log p(q(i), z(i), u(i)) (147)

Note for any sequence (q, z, u) of belief, observations and actions

p(q, z, u | θ) = p(q0) p(z1 | q0) p(q1 | q0, z1) p(u1 | q1, θ) (148)
p(z2 | q1, u1) p(q2 | q1, u1, z2) p(u2 | q2, θ) · · · (149)

Thus

∇θ log p(q, z, u) =
T∑
t=1

∇θ log p(ut | qt, θ) (150)

3.3.1 Soft-Max controller

A convenient way to parameterize the controller is to use a softmax function

p(U = i | q θ) =
eθ
′
.iφ(q)∑

k e
θ′.kφ(q)

(151)

Figure 6: Graphical Represen-
tation of a POMDP process.
For policy gradient methods the
controller is parameterize by θ
and gradient methods are used
to find values of θ that maxi-
mize the long term utility.

Sensor
Process

System
Process

Action
Process

Controller
parameters

Belief
Process

where φ(q) is a vector function of q that represents key features of the belief state.
Here we represent θ as a matrix. The element θij of this matrix represents the
support of feature φj(q) for response i. The term θ·i is the i column of the matrix
θ. Let q be fixed and define

pk = p(U = k | q θ) (152)
φ = φ(q) (153)

Note
∂pk
∂θij

= pk (δjk − pk) φj (154)

Thus
∂ log pk
∂θij

= (δjk − pk) φj (155)

4 Appendix

4.1 Terminology

Optimal controllers are presented in terms of maximization of a reward function.
Equivalently they could be presented as minimization of costs, by simply setting the
cost function equal the reward with opposite sign. Below is a list of useful words
and their equivalents

• Cost = - Value = - Reward = - Utility.= - Payoff
• The goal is to minimize Costs, or equivalent to maximize Value, Reward,

Utility.
• We will use the terms Return and Performance to signify Cost or Value.
• Step = Stage
• One Step Cost = Running Cost
• Terminal cost = Bequest cost
• Policy = control law = controller = control

• Optimal n-step to go cost = optimal 1 step cost + optimal (n-1) step to go
cost

• n-step to go cost given policy = 1 step cost given policy + (n-1) step to go
cost given policy

4.2 Cross Sums

Definition 4.1. Let a be an r row, c column matrix and b an r row, d column
matrix. Then a⊕ b is an r row by c× d column matrix, defined as follows

a⊕ b def=
(

(a1 + b1), · · · , (a1 + bd) + · · ·+ (ac + bd)
)

(156)

where ai,bj are the ith column of a and jth column of b.
Definition 4.2. Let a1, · · ·an be a set of matrices with r rows and ci columns.

n⊕
i=1

ai
def= a1 ⊕ a2 ⊕ · · · ⊕ an (157)

Remark 4.1. Note
⊕n

i=1 ai is a matrix with r rows and
∏n
i=1 ci columns

Lemma 4.1 (Sum of Max is Max of Cross Sum). Let x, y be row vectors. Let
max(x) be an element of x that is no smaller than any of the other elements of x.
Then

max(x) + max(y) = max(x⊕ y) (158)

Lemma 4.2. Let x be an r-dimensional row vector. Let a1 · · ·an be matrices with
r rows. Then

n∑
i=1

max(x ai) = max
(
x

n⊕
i=1

ai

)
(159)

