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1 Spectral Theorem

Let A be a k × k positive definite symmetric matrix. Then A can be decomposed
as follows:

A = PΛPT (1)

where P is a p×p orthonormal matrix: PPT = I, and Λ is a p×p diagonal matrix.

Λ =

[
λ1 0 · · · 0
0 λ2 · · · 0
0 0 0 λp

]
(2)

If all λi are different, P is unique up to multiplication of each column by −1 other-
wise there is an infinite number of solutions.

1.1 Eigen Form

From 1 it follows that
AP = PΛ (3)

or equivalently,

Aei = λiei (4)

where ei is the ith column of P . Thus, the columns of P are the eigenvectors of
A, and the λi are the eigenvalues associated to each column. For convenience the
columns of P are organized such that λ1 ≥ λ2 · · · ≥ λp.

2 The Linear Compression Problem

Let

• XT = [X1, · · · , Xp] be a random vector on (Ω,F , P ), with mean µ and
variance matrix Σ. Let {λ1 > λ2 > · · · > λp > 0} be the eigenvalues of the
covariance matrix, and {e1, · · · ep} the associated eigenvectors.

• B = {ui ∈ Rp; i = 1 · · · k}, an orthonormal basis of Rk: ui · uj = δi,j .

• Let U = [u1, · · · , uk] a matrix whose columns are the basis vectors.

• V , the subspace spanned by B
• Yi = uT

i X, the length of the projection of X onto ui. In matrix form:
Y = UT X. Call Yi the ith component of X w.r.t. the basis B

• X̂ = ProjV X =
∑k

i=1 Yiui, the projection of X onto subspace V . In matrix
notation X̂ = UY = UUT X.

Our goal is to find an orthonormal basis that minimizes the mean square error

E‖X − X̂‖2 =
p∑

i=1

E(Xi − X̂i)2 (5)



2.1 Example

X may be a random variable describing a sample of N images. Thus, x =
(x1, · · · , xp) represents a specific image. Each component xi is a pixel value. The
distribution of X is defined by the sample: P (X = x) = 1/N if x in is in the sample,
0 otherwise. We want to approximate all the images in the sample as a linear com-
bination of a set of images {u1, · · ·uk}. The basis images have to be orthonormal
and we want to choose them s.t. the mean squared error made on a pixel by pixel
basis be as small as possible. This gives us a nice compression scheme. The sender
and receiver know the basis images. The receiver simply sends the components of a
new image (i.e., the inner product between the new image and each of the images in
the codebook) and the receiver reconstruct the new image by adding up the images
in the codebook times their corresponding weights (i.e., the components).

2.2 Network Interpretation

We can frame the problem from a neural net point of view as an auto-encoder
problem. An input pattern is transformed into a set of activations in the hidden
layer. The output has to be a reconstruction of the input based on the activations
of the hidden layer. Let XT = [X1 · · ·Xp] is the input to a linear feed-forward
network. The components Y = [Y1 · · ·Yk] are the activations of the hidden layer.
The matrix U = [u1 · · ·up] is the matrix of connections between the input and
hidden unit. Each vector ui in the orthonormal basis is the fan-in weight vector
from the input X onto the ith hidden unit: Yi = uT

i X =
∑

ui,jXi. The random
vector X̂ is the activation of the output layer. The transpose of U is the matrix of
connections from hidden units to output units. Thus X̂ = UY = UUT X. Our goal
is to find a weight matrix U that minimizes the mean squared difference between
the input X and the output X̂.

The step from input to hidden unit can be seen as an analysis process. The X are
modeled as being formed by a combination of uncorrelated sources, the components,
that we want to recover. The step from hidden to outputs can be seen as a synthesis
process. Given the estimated sources, we reconstruct the input.
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Figure 1: A network interpretation of the compression problem



2.3 Fact 1

First of all, using the projection theorem, we know that for a given linear subspace
V , the best linear approximation to X is the projection of X onto V . We symbolize
this projection as X̂. It follows that,

E‖X‖2 = E‖X̂‖2 + E‖X − X̂‖2 (6)

Proof: For each x = X(ω),
x = x̂ + (x− x̂) (7)

and since x̂ is the projection of x onto subspace V ,

‖x‖2 = ‖x̂‖2 + ‖x− x̂‖2 (8)

Taking expected values, Fact 1 follows.

�

2.4 Fact 2

E‖X̂‖2 =
k∑

i=1

E(Y 2
i ) (9)

Proof:

For each x = X(ω), the projection of x onto V , is

x̂ =
k∑

i=1

yiui (10)

where yi = uT
i x is the length of the projection onto the basis vector ui. Since the

ui are orthogonal to each other,

‖x̂‖2 =
k∑

i=1

‖yiui‖2 (11)

and since ui have unit length,

‖x̂‖2 =
k∑

i=1

y2
i (12)

Taking expected values, Fact 2 follows.
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2.5 Corollary to Fact 2

Note E(Yi) = E(uT
i X) = uT

i µ. Moreover, V ar(Yi) = E(Y 2
i )− E2(Yi). Therefore,

E‖X̂‖2 =
k∑

i=1

V ar(Yi)− (uT
i µ)2 (13)

Thus, if X has zero mean, µT = [0 · · · 0]

E‖X̂‖2 =
k∑

i=1

V ar(Yi) (14)

2.6 Remark

Assume the input variables have zero mean µT = [0 · · · 0], which is always easy to
achieve. Using Fact 1 and 2,

E‖X − X̂‖2 = E‖X‖2 −
k∑

i=1

V ar(Yi) (15)

Since E‖X‖2 is fixed, minimizing the mean square error is equivalent to maximizing
the variance of the components.

2.7 Fact 3

The variance of the coefficients is maximized by using the first k eigenvector of Σ
as the basis set: ui = ei, i = 1 · · · k.

Proof:

The proof works by induction. First we assume it is true for k− 1 and prove it true
for k. Then we show it is true for k = 1.

We know

V ar(Yk) = V ar(uT
k X) = uT

k Σuk = uT
k PΛPT uk = wT Λw (16)

where wT = [w1 · · ·wk] = uT
k P . Note wT Λw is a quadratic form, thus

V ar(Yk) =
p∑

i=1

w2
i λi (17)

Note ‖w‖2 = 1, since uk has unit length and P is an orthonormal matrix. Now
let’s assume the first k − 1 basis vectors are the eigenvector of Σ, it follows that
wi = 0, i = 1, · · · k−1, because uk has to be orthogonal to the previous basis vectors.
Thus,

V ar(Yk) =
p∑

i=k

w2
i λi (18)



Since the λi are in strictly decreasing order, then the variance is maximized by
making wk = 1 and wj = 0, j 6= k. And since wT = ukP , it follows that uk has to
be ek.

Making k = 1 and following the same procedures it is easy to show that u1 = e1,
the first eigenvector, completing the proof.

Note that if some eigenvalues are equal, the solution is not unique. Also if one
eigenvalue is zero, there is an infinite number of solutions.

�

2.8 Decomposition of Variance

Assuming the inputs have zero mean, then E‖X‖2 =
∑p

i=1 V ar(Xi). More-
over, from the spectral decomposition of the covariance matrix, we know that∑p

i=1 V ar(Xi) =
∑p

i=1 λi. Moreover,
V ar(Yi) = V ar(e′iX) = e′iΣei = e′iPΣPei = λi (19)

Recalling equation 15, it follows that when our basis is the first k eigenvalues of Σ,

E‖X − X̂‖2 =
p∑

i=1

λi −
k∑

i=1

V ar(Yi) =
p∑

i=k

λi (20)

In other words, the error of the approximation equals the sum of the eigenvalues
associated with eigenvectors not used in our basis set.

2.9 Remarks

• Note that the proof works regardless of the distribution of X. An interesting
aspect to this is that as long as we are projecting onto a linear space, optimal
solutions can be achieved using only the mean and covariance matrix of the
entire distribution.

• The results do not depend on the fact that the eigenvectors are orthogonal.
To see why suppose we are considering a vector ũk which is not-necessarily
orthogonal to u1 · · ·uk−1. Then we can choose a vector uk that is orthogonal
to u1 · · ·uk and that spans the same space as u1 · · · ũk. The reconstructions
made from the two spaces would be indistinguishable.

• The results depend crucially on the fact that the reconstructions are con-
strained to be a linear combination of the components of Y . To illustrate
this fact consider the example in Figure 2. There is a 2 dimensional dis-
tribution with equal probability mass at 4 points A, B, C and D. The first
eigenvector of this distribution is the vertical axis. Note that the projec-
tions of points A and B on the vertical axis are indistinguishable. However
the projections of the 4 points on the horizontal axis are distinguishable.
A non-linear decoder would be able to perfectly reconstruct those points
from the projections on the horizontal axis not from the vertical axis.

2.10 Definition of Principal Components

The random variable Yi is called the ith principal component of the random vector
X iff,



A B

C D

First Eigenvector

Second Eigenvector

Figure 2: Consider a distribution of 4 equally probably points A, B, C and D. The
first principal component in this distribution is the vertical axis. The projections
of points A and B on this axis are indistinguishable. However the projections on
the horizontal axis are distinguishable. Thus a non-linear decoder would be able to
perfectly reconstruct the points using the horizontal projections but not the vertical
projections.

1. Yk = u′kX where uk ∈ Rp and

uk = argmax
u

V ar(l′X) (21)

2. Yi is uncorrelated with the previous components Y1 · · ·Yk−1.

3. uk is orthogonal to the previous basis vectors; u′kui = δi,k, i ≤ k

From the previous sections it follows that if the eigenvalues of Σ are different from
each other and different from zero, the solution is unique, and Yi = eiX, i = 1 · · · p.
Otherwise there is an infinite number of solutions. Moreover, the principal compo-
nents are associated with the mean square error solution only if the mean of X is
the zero vector.

2.11 Remark

Note that
Cov(eiX, lX) = e′iΣl = e′iPΛP ′l = λie

′
il (22)

Assuming the first principal component is Yi = e′iX, and λ2 6= 0 it follows that
making l orthogonal to e1 is equivalent to making Y2 uncorrelated with Y1. However,
if λ2 = 0, then all solutions, orthogonal and non-orthogonal are uncorrelated.



2.12 Interpretation

Principal component analysis models X as a linear combination of uncorrelated
hidden sources, which are called the principal components.

If our goal is to decompose X into its underlying hidden sources, we can do so using
the following equation:

Yi = eiX (23)

From this point of view, each component of the ith eigenvector tells us how much
each of the random variables in X should be weighted to recover the ith “hidden”
source.

If our goal is to synthesize X when given a set of underlying sources, we can do so
by using the following equation

X ≈ X̂ =
k∑

i=1

Yiei (24)

From this point of view, the jth component of the ith eigenvector tells us the weight
of the ith hidden source onto the jth component of X.

2.13 Bayesian Interpretation

Section under construction. It will have to do with optimal distribution of X ...

3 Implementation issues

Let X be our matrix of data (images in our particular case): X ∈ Rm×N where
m is the number of images and N is the total number of pixels. In our case then
m � N .
The covariance matrix Cx is defined as

Cx =
X ′X

m− 1

The matrix of eigenvectors P is such that Cx = PDP ′ , where D is diagonal and
P is orthogonal (since Cx is symmetrical and positive definite).
Now define

A =
X ′

√
m− 1

therefore Cx = AA′.

A can be decomposed using singular value decomposition (SVD) in A = LMO′

where L and O are orthogonal matrices and M is diagonal. L ∈ RN×N , M ∈ RN×m,
O ∈ Rm×m. We can then rewrite Cx as:

Cx = AA′ = LMO′OM ′L′

since O is orthogonal ⇒ O′O = I ⇒ Cx = LMM ′L′.
Comparing this equation with Cx = PDP ′ ⇒ L ≡ P, MM ′ ≡ D.



3.1 Pentland’s shortcut (Turk & Pentland, 1991)

Consider T = XX′

m−1 = A′A: T ∈ Rm×m. T = OM ′L′LMO′ = OM ′MO′ ⇒ O is the
matrix of eigenvectors of T .

By definition of eigenvectors: if vi is a generic eigenvector corresponding to an
eigenvalue λi:

Tvi = λivi ⇒ A′Avi = λivi ⇒ AA′Avi = Aλivi ⇒ CxAvi = λiAvi

(the conclusion follows from Cx = AA′ and the fact that λi is a scalar) ⇒ Avi

represent the eigenvectors of the original covariance matrix Cx. Since O was the
matrix of eigenvectors of T then AO ≡ P .

In this case we are interested only in the matrix O of the singular value decom-
position, then we can use the “economy” version of the SVD in MATLAB which
computes only the first m columns of L and therefore the first m rows of M giving
L of size N ×m,M of size m×m (the only portion of the original M of size N ×m
that was not identically zero) and O exactly as before.

Combining the use of SVD with Pentland’s shortcut we avoid the multiplication
needed to obtain Cx and the computation of all the columns of L and M we are
not interested in.

4 History

• The first version of this document was written by Javier R. Movellan in
1997 and used in one of the courses he taught at the Cognitive Science
Department at UCSD.

• The document was made open source under the GNU Free Documentation
License Version 1.2 on October 9 2003, as part of the Kolmogorov project.


