
Discrete Time Stochastic Optimal Control

Copyright c©Javier R. Movellan

February 10, 2011

Please cite as
Movellan J. R. (2009) Primer on Stochastic Optimal Control MPLab Tuto-

rials, University of California San Diego

1

1 Conventions

Unless otherwise stated, capital letters are used for random variables, small
letters for specific values taken by random variables, and Greek letters for fixed
parameters and important functions. We leave implicit the properties of the
probability space (Ω,F , P) in which the random variables are defined. Notation
of the form X ∈ <n is shorthand for X : Ω → <2, i.e., the random variable X
takes values in <n. We use E for expected values and Var for variance. When the
context makes it clear, we identify probability functions by their arguments. For
example p(x, y) is shorthand for the joint probability mass or joint probability
density that the random variable X takes the specific value x and the random
variable Y takes the value y. Similarly E[Y | x] is shorthand for the expected
value of the variable Y given that the random variable X takes value x. We
use subscripted colons to indicate sequences: e.g., X1:t

def= {X1 · · ·Xt}. Given a
random variable X and a function f we use df(X)/dX to represent a random
variable that maps values of X into the derivative of f evaluated at the values
taken by X. When safe we gloss over the distinction between discrete and
continuous random variables. Unless stated otherwise, conversion from one to
the other simply calls for the use of integrals and probability density functions
instead of sums and probability mass functions.

Optimal policies are presented in terms of maximization of a reward function.
Equivalently they could be presented as minimization of costs, by simply setting
the cost function equal the reward with opposite sign. Below is a list of useful
words and their equivalents

• Cost = - Value = - Reward = - Utility.= - Payoff

• The goal is to minimize Costs, or equivalent to maximize Value, Reward,
Utility.

• We will use the terms Return and Performance to signify Cost or Value.

• Step = Stage

• One Step Cost = Running Cost

• Terminal cost = Bequest cost

• Policy = control law = controller = control

• Optimal n-step to go cost = optimal 1 step cost + optimal (n-1) step to
go cost

• n-step to go cost given policy = 1 step cost given policy + (n-1) step to
go cost given policy

2

2 Finite Horizon Problems

Consider a stochastic process {(Xt, , Ut, , Ct, Rt) : t = 1 : T} where Xt is the
state of the system, Ut actions, Ct the control law specific to time t, i.e., Ut =
Ct(Xt), and Rt a reward process (aka utility, cost, etc.). We use the convention
that an action Ut is produced at time t after Xt is observed (see Figure 1).
This results on a new state Xt+1 and a reward Rt that can depend on Xt, Ut
and on the future state Xt+1. This point of view has the disadvantage that the
reward Rt “looks into the future”, i.e., we need to know Xt+1 to determine Rt.
The advantage is that the approach is more natural for situations in which Rt
depends only on Xt, Ut. In this special case Rt does not look into the future. In
any case all the derivations work for the more general case in which the reward
may depend on Xt, Ut, Xt+1.

Remark 2.1. Alternative Conventions In some cases it is useful to think of the
action at time t to have an instantaneous effect on the state, which evolve at a
longer time scale. This is equivalent to the convention adopted here but with
the action shifted by one time step, i.e., Ut in our convention corresponds to
Ut−1 in the instantaneous action effect convention.

This section focuses on episodic problems of fixed length, i.e.., each episode
starts at time 1 and ends at a fixed time T ≥ 1.

Our goal is to find a control law c1, c2, · · · which maximizes a performance
function of the following form

ρ(c1:T) = E[R̄1 | c1:T] (1)

where

R̄t =
T∑
τ=t

ατ−tRτ , t = 1 · · ·T (2)

i.e.,
R̄t = Rt + αR̄t+1 (3)

When α ∈ [0, 1] it is called the discount factor because it tends to discount
rewards that occur far into the future. If α > 1 then future rewards become
more important than present rewards. Note

We let the optimal value function Φt be defined as follows

Φt(xt) = max
ct:T

E[R̄t | xt, ct:T] (4)

In general this maximization problem is very difficult for it involves finding T
jointly optimal functions. Fortunately, as we will see next, the problem decou-
ples into solving T independent optimization problems.

Theorem 2.1 (Optimality Principle). Let ĉt+1:T be a policy that maximizes
E[R̄t+1 | xt+1, ct+1:T] for all xt+1, i.e.,

E[R̄t+1 | xt+1, ĉt+1:T] = max
ct+1:T

E[R̄t+1 | xt+1, ct+1:T] (5)

3

and let ĉt(xt) maximize E[R̄t | xt, ct, ĉt+1:T] for all xt with ĉt:T fixed, i.e.,

E[R̄t+1 | xt+1, ĉt, ĉt+1:T] = max
ct

E[R̄t+1 | xt+1, ct, ĉt+1:T] (6)

Then
E[R̄t | xt, ĉt:T] = max

ct:T
E[R̄t | xt, ct:T] (7)

for all xt

Proof.

Φt(xt) = max
ct:T

E[R̄t | xt, ct:T] = max
ct:T

E[Rt + αR̄t+1 | xt, ct:T]

= max
ct

{
E[Rt | xt, ct] + α max

ct+1:T
E[R̄t+1 | xt, ct:T]

}
(8)

where we used the fact that

E[Rt | xt, ct:T] = E[Rt | xt, ct] (9)

which does not depend on ct+1:T . Moreover,

max
ct+1:T

E[R̄t+1 | xt, ct:T] = max
ct+1:T

∑
xt+1

p(xt+1 | xt, ct) E[R̄t+1 | xt+1, ct+1:T] (10)

where we used the fact that

p(xt+1 | xt, ct:T) = p(xt+1 | xt, ct) (11)

and
E[R̄t+1 | xt, ct, xt+1, ct+1:T] = E[R̄t+1 | xt+1, ct+1:T] (12)

Using Lemma 8.1 and the fact that there is a policy ĉt+1:T that maximizes
E[R̄t+1, xt+1, ct+1:T] for all xt+1 it follows that

max
ct+1:T

E[R̄t+1 | xt, ct:T] = max
ct+1:T

∑
xt+1

p(xt+1 | xt, ct) E[R̄t+1 | xt+1, ct+1:T]

=
∑
xt+1

p(xt+1 | xt, ct) max
ct+1:T

E[R̄t+1 | xt+1, ct+1:T] (13)

=
∑
xt+1

p(xt+1 | xt, ct) E[R̄t+1 | xt+1, ĉt+1:T] = E[R̄t+1 | xt, ct, ĉt+1:T] (14)

Thus we have that

Φt(xt) = max
ct:T

E[R̄t | xt, ct:T] = max
ct

(
E[Rt | xt, ct] + αE[R̄t+1 | xt, ct, ĉt+1:T]

)
(15)

4

Remark 2.2. The optimality principle suggests an optimal way for finding
optimal policies: It is easy to find an optimal policy at terminal time T . For
each state xT such policy would choose an action that maximizes the terminal
reward RT , i.e.,

E[RT | xt, ĉT] = max
cT

E[RT | xt, ĉT] (16)

Provided we have an optimal policy for time ct+1:T we can leave it fixed and
then optimize with respect to ct. This allows to recursively compute an optimal
policy starting at time T and finding our way down to time 1

The optimality principle leads to Bellman Optimality Equation which we
state here as a corollary of the Optimality Principle

Corollary 2.1 (Bellman Optimality Equation).

Φt(xt) = max
ut

E[Rt + α Φt+1(Xt+1) | xt, ut] (17)

for t = 1 · · ·T where

E[Φt+1(Xt+1) | xt, ut] =
∑
xt+1

p(xt+1 | xt, ut)Φt+1(xt+1) (18)

and
ΦT+1(x) def= 0, for all x (19)

Proof. Obvious for t = T . For t < T revisit equation (13) to get

max
ct+1:T

E[R̄t+1 | xt, ct:T] =
∑
xt+1

p(xt+1 | xt, ct) max
ct+1:T

E[R̄t+1 | xt+1, ct+1:T] (20)

=
∑
xt+1

p(xt+1 | xt, ct) Φt+1(xt+1) = E[Φt+1(Xt+1) | xt, ct] (21)

Combining this with equation (8) completes the proof.

Remark 2.3. It is useful to clarify the assumptions made to prove the opti-
mality principle:

• Assumption 1:
E[Rt | xt, ct:T] = E[Rt | xt, ct] (22)

• Assumption 2:

p(xt+1 | xt, ct, ct+1:T) = p(xt+1 | xt, ct) (23)

• Assumption 3:

E[R̄t+1 | xt, ct, xt+1, ct+1:T] = E[R̄t+1 | xt+1, ct+1:T] (24)

5

• Assumption 4: Most importantly wee assumed that the optimal policy
ĉt+1:T did not impose any constraints on the set of policies ct with respect
to which we were performing the optimization. This would be violated,
if there were an additional penalty or reward that depended directly on
ct:T . For example, this assumption would be violated if we were to force
the policies of interest to be stationary. This would amount to putting a
large penalty for policies that do not satisfy c1 = c2 = · · · cT−1.

Figure 1 displays a process that satisfies Assumptions 1-3. Note under the
model the reward depends on the start state and the end state and the action.
In addition we let the reward to depend on the control law itself. This allows,
for example, to have the set of available actions depend on the current time and
state.

 Xt Xt+1 System
Process

Action
Process

Xt−1

Controller

 Ut

 Ct

 Rt Reward Process

Figure 1: Graphical Representation of the a time slice of a process satisfying
the required assumptions. Arrows represent dependency relationships between
variables.

Remark 2.4. Note the derivations did not require to make the standard Marko-
vian assumption, i.e.,

p(xt+1 | x1:t, c1:t) = p(xt+1 | xt, ct) (25)

Remark 2.5. Consider now the case in which the admissible control laws are
of the form

Ut = Ct(Xt) ∈ Ct(Xt) (26)

where Ct(xt) is a set of available actions when visiting state xt at time t. We
can frame this problem by implicitly adding a large negative constant to the
reward function when Ct chooses inadmissible actions. In this case the Bellman
equation reduces to the following form

Φt(xt) = max
ut∈Ct(xt)

E[Rt + α Φt+1(Xt) | xt, ut] (27)

6

Remark 2.6. Now note that we could apply the restriction that the set of
admissible actions at time t given xt is exactly the action chosen by a given
policy ct. This leads to the Bellman Equation for the Value of a given policy

Φt(xt, ct:T) = E[Rt + αΦt+1(Xt+1, ct+1:T) | xt, ct] (28)

where
Φt(xt, ct:T) = E[R̄t | xt, ct:T] (29)

is the value of visiting state xt at time t given policy ct:T .

Remark 2.7. Note that the Bellman equation cannot be used to solve the open
loop control problem, i.e., restrict the set of allowable control laws to open loop
laws. Such laws would be of the form

Ut = ct(X1) (30)

which would violate Assumption 4. since

E[R2 | x2, c2] 6= E[R2 | x1, x2, c1:2] (31)

Remark 2.8 (Sutton and Barto (1998) : Reinforcement Learning, page
76 step leading to equation (3.14)). Since assuming stationary policies vi-
olates Assumption 4, this step is in Sutton and Barto’s proof is not valid. The
results are correct however, since for the infinite horizon case it is possible to
prove Bellman’s equation using other methods (see Bertsakas book, for exam-
ple).

Remark 2.9. A problem of interest occurs when the set of possible control laws
is a parameterized collection. For the general case such a problem will involve
interdependencies between the different ct, i.e., the constraints on C cannot be
expressed as

T∑
t=0

ft(Ct) (32)

which is required for ?? to work. For example, if c1:T is implemented as a
feed-forward neural network parameterized by the weights w then would be
stationary, i.e., c1 = c2 = · · · = cT . A constraint that cannot be expressed using
(32). The problem can be approached by having time be one of the inputs to
the model.

Example 2.1 (A simple Gambling Model (from Ross: Introduction to
Dynamic Programming)). A gambler’s goal is to maximize the log fortune
after exactly T bets. The probability of winning on a bet is p. If winning the
gambler gets twice the bet, if losing it loses the bet.

Let Xt represents the fortune after t bets, with initial condition X0 = x0.

Rt =

{
0, for t = 0, · · · , n− 1
log(Xt), for t = n

(33)

7

Let the action Ut ∈ [0, 1] represent a gamble of UtXt dollars. Thus, using no
discount factor α = 1, Bellman’s optimality equation takes the following form

Φt(xt) = max
0≤u≤1

E[Φt+1(Xt+1) | xt, ut] (34)

= max
0≤u≤1

{p Φt+1(xt + uxt) + (1− p) Φt+1(xt − uxt)} (35)

with boundary condition
ΦT (x) = log(x) (36)

Thus

ΦT−1(x) = max
0≤u≤1

{p log(x+ ux) + (1− p) log(x− ux)} (37)

= log(x) + max
0≤u≤1

{p log(1 + u) + (1− p) log(1− u)} (38)

Taking the derivative with respect to u and setting it to 0 we get

2p− 1− u
1− u2

= 0 (39)

Thus

ûT−1(x) = 2p− 1, provided p > 0.5 (40)
ΦT−1(x) = log(x) + p log(2p) + (1− p) log(2(1− p)) = log(x) +K (41)

Thus, since K is a constant with respect to x, the optimal policy will be identical
at time T − 2, T − 3...1, i.e., the optimal gambling policy makes

Ut = (2p− 1)Xt (42)

provided p ≥ 0.5. If p < 0.5 the optimal policy is to bet nothing.

3 The Linear Quadratic Regulator (LQR)

We are given a linear stochastic dynamical system

Xt+1 = aXt + but + cZt (43)
X1 = x1 (44)

where Xt ∈ <n, is the system’s state, a ∈ <n ⊗ <n, ut ∈ <m, b ∈ <n ⊗ <m,
Zt ∈ <d, c ∈ <n ⊗ <d where ut is a control signal and Zt are zero mean,
independent random vectors with covariance equal to the identity matrix. Our
goal is to find a a control sequence ut:T = ut · · ·uT that minimizes the following
cost

Rt = X ′tqtXt + U ′tgtUt (45)

where the state cost matrix qt is symmetric positive semi definite, and the
control cost matrix gt is symmetric positive definite. Thus the goal is to

8

keep the state Xt as close as possible to zero, while using small control signals.
We define the value at time t of a state xt given a policy π and terminal time
T ≥ t as follows

Φt(xt, π) =
T∑
τ=t

γτ−tE[Rt | xt, π] (46)

3.1 Linear Policies: Policy Evaluation

We will consider first linear policies of the form ut = θtxt, where θt is an
m × n matrix. Thus the policies of interest are determined by T matrices
θ1:T = (θ1, · · · , θT). If we are interested on affine policies, we just need to
augment the state Xt with a new dimension that is always constant. We will
now show that the

We will now show, by induction, that the value Φ(xt) of reaching state xt
at time t under policy φt:T is a quadratic function of the state1, i.e.,

Φ(xt) = x′tαtxt + βt (47)

First note that since g is positive definite, the optimal control at time T is
ûT = 0. Thus θ̂t = 0

ΦT (xT) = x′T qTxT = x′TαTxT + βT (48)

where

αT = qT , βT = 0 (49)

Assuming that

Φ(xt+1) = x′t+1αt+1xt + βt+1 (50)

and applying Bellman’s equation

Φt(xt) = x′tqtxt + x′tθ
′
tgtθtxt (51)

+ γE
[
Φt+1(Xt+1) | xt, θt+1:T

]
+ (52)

= x′tqtxt + x′tθ
′
tgtθtxt (53)

+ γE
[
Φt+1(axt + bθtut + cZt,) | xt, θt+1:T

]
+ (54)

= x′tqtxt + x′tθ
′
tgtθtxt (55)

+ γ(axt + bθtut)′αt+1(axt + bθtut) + γTr(c′αt+1c) + βt+1 (56)

where we used the fact that E[Zt,iZt,j | xt, ut] = δi,j and therefore

E
[
Z ′tc
′αt+1cZt | xt, ut

]
=
∑
ij

(c′αt+1c)ijE
[
ZtiZtj

]
(57)

=
∑
i

(c′αt+1c)ij = Tr(c′αt+1c) (58)

1To avoid clutter we leave implicit the dependency of Φ on t and θ

9

Thus

Φt(xt) = x′t

(
qt + θ′tgtθt + +γ(at + btθt)′αt+1(at + btθt)

)
xt (59)

+ γTr(c′tαt+1ct) + βt+1 (60)

Thus

Φ(xt) = x′tαtxt + βt (61)

where

αt = qt + θ′tgtθt + γ(at + btθt)′αt+1(at + btθt) (62)
= θ′t(gt + γb′tαt+1βt)θt + qt + γa′tαt+1at (63)

βt = Tr(c′tαt+1ct) + βt+1 (64)

3.2 Linear Policies: Policy Improvement

Taking the gradient with respect to θt of the state value

∇vec[θt]Φ(xt) = ∇vec[θt]x
′
tαtxt + βt (65)

= ∇θt
(θtxt)′gt(θxt) + γ∇θt

x′t

(
(at + btθt)′αt+1(at + btθt)

)
xt

(66)

Note

∇vec[θ](θtx)′gt(θx) = ∇vec[θ]θx ∇θx(θtx)′gt(θx) = x⊗ Ivec[θx] (67)

Thus

∇θ(θtx)′gt(θx) = gtθxx
′ (68)

Moreover

∇vec[θ] x′(a+ bθ)′α(a+ bθ)x = ∇vec[θ] (a+ bθ)x (69)
∇(a+bθ)xx

′(a+ bθ)′α(a+ bθ)x (70)
= x⊗ b′vec[α(a+ bθ)x] (71)

Thus

∇θ x′(a+ bθ)′α(a+ bθ)x = b′α(a+ bθ)xx′ (72)

and

∇θt
Φ(xt) =

(
gtθt + γb′tαt+1(at + btθt)

)
xtx
′
t (73)

We can thus improve the policy by performing gradient ascent

θt ← θt + ε
(
gtθt + γb′tαt+1(at + btθt)

)
xtx
′
t (74)

10

This gradient approach is useful for adaptive approaches to non-stationary prob-
lems and for iterative approaches to solve non-linear control problems via lin-
earizations.

The optimal value of θt can also be found by setting the gradient to zero
and solving the resulting algebraic equation. Note for

θ̂t = −γ
(
gt + γb′tαt+1bt)

)−1

b′tαt+1at (75)

then

∇θt
Φ(xt) = 0, for all xt (76)

Note also for θ̂t then αt simplifies as follows

αt = θ̂′t(gt + γb′tαt+1βt)θ̂t + qt + γa′tαt+1at (77)

= −γθ̂′tb′tαt+1at + qt + γa′tαt+1at (78)

αt = qt + γ(γa′t − θ̂′tb′t)αt+1at (79)

3.3 Optimal Unconstrained Policies

Here we show that in fact the optimal policy is linear, so a linearity constraint
turns out not to be a constraint in this case and the results above produce the
optimal policy. The proof works by induction. We note that for the optimal
policy

Φ(xT) = x′TαtxT + βT (80)

and if

Φ(xt+1) = x′t+1αt+1xt+1 + βt+1 (81)

then, applying the Bellman Equations

Φ(xt) = min
ut

x′tqtxt + u′tgtut (82)

+ γ(axt + but)′αt+1(axt + but) + γTr(c′αt+1c) + βt+1 (83)

Taking the gradient with respect to ut in a manner similar to how we did above
for θt we get

∇utΦ(xt) = gtut + b′αt+1(axt + but) (84)

Setting the gradient to zero we get the optimal ut

ût = θtxt (85)

θt
def= −(gt + b′αt+1b)−1b′αt+1a (86)

which is a linear policy.

11

3.4 Summary of Equations for Optimal Policy

Let

αT = qT (87)
ûT = 0 (88)

then move your way from t = T − 1 to t = 1 using the following recursion

Kt = (b′αt+1b+ gt)−1b′αt+1a (89)
αt = qt + a′αt+1(a− bKt) (90)

and the optimal action at time t is given by

ût = −Ktxt (91)
(92)

If desired, the value function can be obtained as follows

Φt(xt) = x′tαtxt + γt (93)

where
γt = γt+1 + Tr(c′αt+1c) (94)

Below is Matlab code

% X_{t+1} = a _t X_t + b u_t + c Z_t
% R_t = X_t’ q_t X_t + U_t’ g_t U_t

function gain = lqr(a, b, c, q,g,T)
alpha{T} = q{T};
beta{T}=0;
for t = T-1:-1:1
gain{t} = inv(b’*alpha{t+1}* b + g{t})*b’*alpha{t+1}*a;
alpha{t} = q{t}+ a’*alpha{t+1}*(a - b*gain{t});
beta{t} = beta{t+1}+ trace(c’*alpha{t+1} *c);

end

Remark 3.1. The dispersion matrix c has no effect on the optimal control
signal, it only affects the expected payoff given the optimal control.

Remark 3.2. Note the optimal action at time t is an error term axt premulti-
plied by a gain term Kt. The gain term Kt and the targets µt do not depend
on x1:T and thus only need to be computed once.

Remark 3.3. Note Kt in (??) is the ridge regression solution to the problem of
predicting b using a. The error of that prediction a−bKt appears in the Riccati
equation (??)

12

Remark 3.4. Suppose the cost function is of the form

Rt = (Xt − ξt)′qt(Xt − ξt) + U ′tgtUt (95)

where ξ1:T is a desired sequence of states. We can handle this case by augment-
ing the system as follows

X̃t+1 = ãXt + b̃ut + c̃Zt (96)

where

X̃t =

 Xt

ξt
1

 ∈ <2n (97)

ã =

 an×n 0n×n 0n×1

0n×n 0n×n ∆ξt
01×n 01×n 1

 ∈ <2n+1 ⊗<2n+1 (98)

b̃ =

 bn×m
0n×m
01×m

 ∈ <2n+1 ⊗<m (99)

c̃ =

 cn×d
0n×d
01×d

 ∈ <2n+1 ⊗<d (100)

(101)
(102)

where ∆ξt
def= ξt+1−ξt and we use subscripts as a reminder of the dimensionality

of matrices. The return function is now strictly quadratic on the extended state
space

R̃t = X̃ ′tq̃tX̃t + U ′tgtUt (103)

where

q̃t =

 qt −qt 0n×1

−qt qt 0n×1

01×n 01×n 0

 ∈ <2n+1 ⊗<2n+1 (104)

3.5 Example

Consider the simple case in which

Xt+1 = aXt + ut + cZt (105)

at time t we are at xt and we want to get as close to zero as possible at the next
time step. There is no cost for the size of the control signal. In this case b = I,

13

qt = I, qt = 0, gt = 0, ξt = 0. Thus we have

µT = 0 (106)
αT = I (107)
ûT = 0 (108)

(109)

KT−1 = αT = I (110)
κT−1 = 0 (111)
αT−1 = I (112)
µT−1 = 0 (113)

(114)

from which it follows that

εt = I, (115)
ût = −axt, for t = 1 · · ·T − 1 (116)

In this case all the controller does is to anticipate the most likely next state
(i.e., ax) and compensates for it accordingly so that the expected value at the
next time step is zero.

3.6 Example: Controlling a mass subject to random forces

Consider a particle with point mass m located at xt with velocity vt subject
to a constant force ft = m ut for the period [t, t + ∆t]. Using the equations of
motion. For τ ∈ [0,∆t] we have that

vt+τ = vt +
∫ τ

0

utds = vt + utτ (117)

xt+∆t = xt +
∫ ∆t

0

vt+sds = xt + vt∆t + ut
∆2
t

2
(118)

or in matrix form(
xt+∆t

vt+∆t

)
=
(

1 ∆t

0 1

)(
xt
vt

)
+

(
∆2

t

2
∆t

)
ut (119)

We can add a drag force proportional to vt and constant through the period
[vt, vt + ∆t] and a random force constant through the same period(
xt+∆t

vt+∆t

)
=
(

1 ∆t − ε∆2
t/2

0 1− ε∆t

)(
xt
vt

)
+

(
∆2

t

2
∆t

)
ut+

(
0 σ∆2

t/2
0 σ∆t

)(
Z1,t

Z2,t

)
(120)

14

We can express this as a 2-dimensional discrete time system

x̃t+1 = ax̃t + but + cZt (121)

where

x̃t =
(
xt
vt

)
, a =

(
1 ∆t − ε∆2

t/2
0 1− ε∆t

)
, b =

(
∆2

t

2
∆t

)
, c =

(
0 σ∆2

t/2
0 σ∆t

)
(122)

And solve for the problem of finding an optimal application of forces to keep
the system at a desired location and/or velocity while minimizing energy con-
sumption.

Figure 2 shows results of a simulation (Matlab Code Available) for a point
mass moving along a line. The mass is located at -10 at time zero. There is
a constant quadratic cost for applying a force at every time step, and a large
quadratic at the terminal time (goal is to be at the origin with zero velocity
by 10 seconds). Note the inverted U shape of the obtained velocity. Also note
the system applies a positive force during the first half of the run and then a
negative force (brakes) increasingly larger as we get close to the desired location.
Note this would have been hard to do with a standard proportional controller
(a change of sign in the applied force from positive early on to negative as we
get close to the objective.

0 500 1000
−10

−8

−6

−4

−2

0

P
os

iti
on

Time (centisecs)
0 500 1000

0

0.5

1

1.5

V
el

oc
ity

Time (centisecs)
0 500 1000

−1

−0.5

0

0.5

1

C
on

tr
ol

 (
F

or
ce

/M
as

s)

Time (centisecs)

0 500 1000
0

1

2

3

4

5

P
os

iti
on

 G
ai

n

Time (centisecs)
0 500 1000

0

5

10

15

20

V
el

oc
ity

 G
ai

n

Time (centisecs)

Figure 2:

4 Infinite Horizon Case

As T →∞ and under rather mild conditions αt becomes stationary and satisfies
the stationary version of (90)

α = q + a′α(a− b(b′αb+ g)−1b′αa) (123)

15

The stationary control function

ut = −Kxt (124)

K = (b′αb+ g)−1b′αa (125)

minimizes the stationary cost

ρ = lim
t→∞

1
T

T∑
t=1

E[X ′tqXt + U ′tgUt] (126)

Regarding β, given the definition of ρ

βt =
t− 1
t

βt−1 +
1
t
Tr(c′αtc) (127)

and in the stationary case

β =
t− 1
t

β +
1
t
Tr(c′αc) (128)

β = Tr(c′αc) (129)

Thus the stationary value of state xt is

Φ(xt) = x′tαxt + Tr(c′αc) (130)

4.1 Example

We want to control

Xt+1 = Xt + Ut + Zt (131)

where Ut = −KXt. In Matlab, the algebraic Riccati equation can be solved
using the function “dare” (discrete algebraic riccati equation).

We enter

(alpha, L,K) = dare(a, b, q, g, 0, 1) (132)

For q = 1, g = 0 we get K = 1, i.e, if there is no action cost the best thing to do
is to produce an action equal to the current state but with the oposite sign. For
q = 1, g = 10 we get K = 0.27, i.e., we need to reduce the gain of our response.

5 Feedback Linearization

Proposition 5.1. Consider a process of the form

Xt+1 = aXt + b f(Xt, Ut, t) + cZt (133)

16

where a, b are fixed matrices, Ut is a control variable and f is a function such
that for every x, t the mapping between Ut and f(Xt, Ut, t) is bijective, i.e. there
is a function h such that for every x, y, t

h(x, f(x, u, t), t) = u (134)

Let the instantaneous cost function take the following form

Rt = X ′tqtXt + f(Xt, Ut, t)′gtf(Xt, Ut, t) (135)

Then the following policy is optimal:

Ut = h(Xt, Yt, t) (136)

where Yt is the solution to the following LQR control problem

Xt+1 = aXt + bYt + cZt (137)

Proof. Let the control process U be defined as follows

Ut = π(Xt, t) (138)

where π is a control policy. Let the virtual control process Y be defined a follows

Yt = λ(Xt, t) = f(Xt, Ut, t) (139)

Note π and λ are not independent: For every policy π there is one equivalent
policy λ. Moreover for every virtual policy λ there is an equivalent policy π

Ut = π(Xt, t) = h(Xt, λ(Xt, t), t) (140)

We note that when expressed in terms of the Y variables, the control problem
is linear quadratic

Xt+1 = aXt + bYt + cZt (141)
Rt = X ′tqtXt + Y ′t gtYt (142)

Let λ̂ be the optimal policy mapping states to virtual actions, as found using
the standard LQR algorithm on (141), (142). Let

π̂(Xt, t) = h(Xt, λ(Xt, Yt, t), t) (143)

Suppose there is a policy π∗ mapping states to actions better than π̂. Thus the
policy

λ∗(Xt, t) = f(Xt, π
∗(Xt, t), t) (144)

should be better than λ̂, which is a contradition.

This is a remarkable result. It let’s us solve optimally a non-linear control
problem. The key is that we lose control over the action penalty term. Rather
than having the penalty be quadratic with respect to the actions Ut, which could
be things like motor torques, we have to use a penalty quadratic with respect
to f(Xt, Ut, t).

17

6 Partially Observable Processes

Consider a stochastic process {(Xt, Yt, Ut, Ct) : t = 1 : T} where Xt represents
a hidden state, Yt observable states, and Ut actions.We use the convention that
the action at time t is produced after Yt is observed. This action is determined
by a controller Ct whose input is Y1:t, U1:t−1, i.e., the information observed up
to to time t, and whose output the action at time t, i.e.,

Ut = Ct(Ot) (145)

Ot =
(
Y1:t

U1:t−1

)
(146)

Figure 3 display Markovian constraints in the joint distribution of the differ-
ent variables involved in the model. An arrow from variable X to variable Y
indicates that X is a “parent” of Y . The probability of a random variable is
conditionally independent of all the other variables given the parent variables.
Dotted figures indicate unobservable variables, continuous figures indicate ob-
servable variables. Under these constraints, the process is defined by an initial
distribution for the hidden states

X1 ∼ ν (147)

a sensor model
p(yt | xt, ut−1) (148)

and state dynamics model
p(xt+1 | xt, ut) (149)

Remark 6.1. Alternative Conventions Under our convention effect of actions
is not instantaneous, i.e, the action at time t − 1 affects the state and the
observation at time t + 1. In some cases it is useful to think of the effect of
actions occurring at a shorter time scales than the state dynamics. In such
cases it may be useful to model the distribution of observations at time t as
being determined by the state and action at time t. Under this convention, Ut
corresponds to what we call Ut+1 (See Right Side of Figure 3).

It may also be useful to think of the Xt generates Yt, which is used by the
controller Ct to generate Ut.

We will make our goal to find a controller that optimizes a performance
function:

ρ(c1:T) = E[R̄1 | c1:T] (150)

where

R̄t =
T∑
τ=t

ατ−tRτ , t = 1 · · ·T (151)

The controller maps the information state at time t into actions.

18

Sensor
Process Yt

 Xt Xt+1 System
Process

Action
Process

Xt−1

Controller

Information
Process

 Ut

 Ct

Ot = (Y1:t,U1:t−1)

Yt+1 Yt

 Xt Xt+1

Ut+1Ct+1

Ot+1 = (Y1:t,U1:t)

Yt+1

Figure 3: Left: The convention adopted in this document. Arrows represent de-
pendency relationships between variables. Dotted figures indicate unobservable
variables, continuous figures indicate observable variables. Under this conven-
tion the effect of actions is not instantaneous. Right: Alternative convention.
Under this convention the effect of actions is instantaneous.

6.1 Equivalence with Fully Observable Case

• Assumption 1:
E[Rt | ot, ct:T] = E[Rt | ot, ct] (152)

• Assumption 2:

p(ot+1 | ot, ct, ct+1:T) = p(ot+1 | ot, ct) (153)

• Assumption 3:

E[R̄t+1 | ot, ct, ot+1, ct+1:T] = E[R̄t+1 | ot+1, ct+1:T] (154)

Remark 6.2. The catch is that the number of states to represent the observ-
able process grows exponentially with time. For example, if we have binary
observations and actions, the number of possible states by time t is 4t. Thus it
is critical to summarize all the available information.

Remark 6.3. Open Loop Policies We can model open loop processes as special
cases of partially observable control processes. In such cases the state at time
1 but thereafter the observation process is uninformative (e.g., it could be a
constant).

6.2 Sufficient Statistics

A critical problem for the previous algorithm is that it requires us to keep track
of all possible sequences y1:T , u1:T , which grow exponentially as a function of T .
This issue can be sometimes addressed if all the relevant information about the

19

sequence y1:t, u1:t−1 can be described in terms of a summary statistic St which
can be computed in a recursive manner. In particular we need for St to have the
following assumption: Seems like some of these assumptions may be redundant.
Clarify where they are used.

• Assumption 1:
St = ft(Ot) (155)

• Assumption 2:
St+1 = gt(St, Yt+1, Ut) (156)

• Assumption 3:
E[Rt | ot, ut] = E[Rt | st, ut] (157)

• Assumption 4:
p(yt+1 | ot, ut) = p(yt+1 | st, ut) (158)

where ft are known functions. Note

ΦT (oT) = E[RT | ot] = E[RT | st] = Φ̃T (sT) (159)

and thus the optimal value function, and the optimal action at time T depend
only on sT . We will now show that if the optimal value function at time t+ 1 is
a function of st+1, i.e., Φt+1(ot+1) = Φ̃t+1(ft+1(ot+1)) then the optimal action
and optimal value function at time t are a function of st

Φt(ot) = min
ut

E[Rt + αΦt+1(Ot+1) | ot, ut] (160)

= min
ut

E[Rt | st, ut] + α
∑
yt+1

p(yt+1 | ot, ut)Φt+1(ot, ut, yt+1)

 (161)

= min
ut

E[Rt | st, ut] + α
∑
yt+1

p(yt+1 | st, ut)Φ̃t+1(gt(st, yt+1, ut))

(162)

= min
ut

E[Rt | st, ut] + α
∑
st+1

p(st+1 | st, ut)Φ̃t+1(st+1)

 (163)

= min
ut

{
E[Rt + αΦ̃t+1(St+1) | st, ut]

}
def= Φ̃t(st) (164)

Thus, we only need to keep track of st to find the optimal policy with respect
to ot.

20

6.3 The Posterior State Distribution as a Sufficient Statis-
tic

Consider the statistic St = pXt |Ot
, i.e., the entire posterior distribution of states

given the observed sequence up to time t. First note

S1(x1) = p(x1 | Y1) = f1(Y1) for all x1 (165)
(166)

Moreover that the update of the posterior distribution only requires the
current posterior distribution, which becomes a prior, and the new action and
observation

p(xt+1 | y1:t+1, u1:t) ∝
∑
xt

p(xt | y1:t, u1:t)p(xt+1 | xt, ut)p(yt+1 | xt) (167)

which satisfies the second assumption.

E[Rt | ot, ut] =
∑
xt

p(xt | ot, ut)Rt(xt, ut) = E[Rt | st, ut] (168)

and

p(yt+1 | y1:t, u1:t) =
∑
xt+1

p(xt | y1:t, u1:t−1)p(xt+1 | xt, ut)p(yt+1 | xt+1) (169)

6.4 Limited Memory States (Under Construction)

What if we want to make a controller that uses a particular variable at time
t as its only source of information and this variable may not necessarily be a
sufficient statistic of all the past observations. My current thinking is that the
optimality equation will hold, but computation of the necessary distributions may
be hard and require sampling.

7 Linear Quadratic Gaussian (LQG)

The LQG problem is the partially observable version of LQR. We are given a
linear stochastic dynamical system

Xt+1 = aXt + but + cZt (170)
Yt+1 = kXt+1 +mWt+1 (171)
X1 ∼ ν1 (172)

where Xt ∈ <n, is the system’s state, a ∈ <n ⊗ <n, ut ∈ <m, b ∈ <n ⊗ <m,
Zt ∈ <d, c ∈ <n ⊗ <d where ut is a control signal and Zt are zero mean,

21

independent random vectors with covariance equal to the identity matrix. Our
goal is to find a a control sequence ut:T = ut · · ·uT that minimizes the following
cost

Rt = X ′tqtXt + U ′tgtUt (173)

where the state cost matrix qt is symmetric positive semi definite, and the
control cost matrix gt is symmetric positive definite. Thus the goal is to
keep the state Xt as close as possible to zero, while using small control signals.
Let

Ot
def=
(
Y1:t

U1:t−1

)
(174)

represent the information available at time t. We will solve the problem by
assuming that the optimal cost is of the form

Φt(ot) = E[X ′tαtXt | ot] + βt(ot) (175)

where βt(ot) is constant with respect to t − 1, and then proving by induction
that the assumption is correct.

First note since g is positive definite, the optimal control at time T is ûT = 0.
Thus

ΦT (oT) = E[X ′T qTXT | oT] = E[X ′TαTXT | oT] + βT (oT) (176)

and our assumption is correct for the terminal time T with

αT = qT , βT (oT) = 0 (177)

Assuming (175) is correct at time t+ 1 and applying Bellman’s equation

Φt(ot) = E[X ′tqtXt | ot] + min
ut

E
[
Φt+1(Ot+1) + u′tgtut | ot, ut

]
(178)

= E[X ′tqtXt | ot] + E[βt+1(Ot+1) | ot, ut]
+ min

ut

E
[
(aXt + but + cZt)′αt+1(aXt + but + cZt) + u′tgtut | ot, ut

]
(179)

= E[X ′tqtXt | ot] + E[βt+1(Ot+1 | ot] + Tr(c′αt+1c)+

+ min
ut

E
[
(aXt + but)′αt+1(aXt + but) + u′tgtut | ot, ut

]
(180)

where we used the fact that

E[E[Xt+1αt+1Xt+1 |Ot+1] | ot, ut] = E[Xt+1αt+1Xt+1 | ot, ut] (181)

and E[Zt,iZt,j |xt, ut] = δi,j , and that, by assumption E[βt+1(Ot+1) |ot, ut] does
not depend on ut. Thus

Φt(ot) = E[X ′tqtXt | ot] + E[βt+1(Ot+1) | ot] + min
ut

E
[
(aXt + but)′αt+1(aXt + but)

+ u′tgtut | ot, ut
]

(182)
(183)

22

The minimization part is equivalent to the one presented in (228) with the
following equivalence: b→ b, x→ ut, a→ αt+1, C → aXt, d→ gt. Thus, using
(234)

ût = −εtE[Xt | ot] (184)

where

εt = κta (185)

κt = (b′αt+1b+ gt)−1b′αt+1 (186)

And, using (244)

min
ut

E
[
(aXt + but)′αt+1(aXt + but) + u′tgtut | ot, ut

]
= E[X ′ta

′(αt+1 − k′tb′αt+1)aXt | ot]
+ E[(Xt − E[Xt | ot])′a′κtb′αt+1a(Xt − E[Xt | ot])] (187)

We will later show that the last term is constant with respect to u1:t. Thus,

Φt(ot) = E[X ′tαtXt | ot] + βt(ot) (188)

where

αt = a′(αt+1 − k′tb′αt+1)a+ qt (189)
= a′αt+1(a− bεt) + qt (190)

and

βt(ot) = E[βt+1(Ot+1) | ot] + Tr(c′αt+1c) (191)
+ E[(Xt − E[Xt | ot])′a′κtb′αt+1a(Xt − E[Xt | ot])] (192)

By assumption βt+1(ot+1) is independent of u1:t+1 we just need to show that

E[(Xt − E[Xt | ot])′a′κtb′αt+1a(Xt − E[Xt | ot])] (193)

is also independent of u1:t for βt(ot) to be independent of u1:t, completing the
induction proof.

Lemma 7.1. The innovation term Xt − E[Xt | ot] is constant with respect to
u1:t.

Bertsekas Volume I. Consider the following reference process

X̃t+1 = aX̃t + cZt (194)

Ỹt+1 = kX̃t+1 +mWt+1 (195)

Õt = Ỹ1:t (196)

X̃1 ∼ ν1 (197)

23

which shares initial distribution ν1 and noise variables Z,W with the processes
X,Y,H defined in previous sections. Note

X2 = aX1 + bU1 + cZ1 (198)

X3 = a2X1 + abU1 + acZ1 + bU2 + cZ2 (199)
· · · (200)

Xt = at−1X1 +
t−2∑
τ=1

at−1−τ (bUτ + cZτ) (201)

(202)

and by the same token

X̃t = at−1X1 +
t−2∑
τ=1

at−1−τ cZτ (203)

(204)

Thus

E[Xt | ot] = at−1E[X1 | ot] +

(
t−2∑
τ=1

at−1−τ buτ

)
+

t−2∑
τ=1

at−1−τ cE[Zτ | ot] (205)

E[X̃t | ot] = at−1E[X1 | ot] +
t−2∑
τ=1

at−1−τ cE[Zτ | ot] (206)

where we used the fact that E[U1:t−1 | ot] = u1:t−1. Thus

Xt − E[Xt | ot] = X̃t − E[X̃t | ot] (207)

Note since

Yt = kat−1X1 +mWk + k

t−2∑
τ=1

at−1−τ (bUτ + cZτ) (208)

Ỹt = kat−1X1 +mWk + k

t−2∑
τ=1

at−1−τ cZτ (209)

then

Ỹt = Yt − k
t−2∑
τ=1

at−1−τ bUτ (210)

and therefore knowing o1:t determines õ1:t = y1:t. Thus

E[X̃t | ot] = E[X̃t | y1:t] (211)

and
Xt − E[Xt | ot] = X̃t − E[X̃t | y1:t] (212)

which is constant with respect to u1:t−1.

24

Remark 7.1. Note the control equations for the partially observable case are
identical to the control equations for the fully observable case, but using E[Xt|ot]
instead of xt.

7.1 Summary of Control Equations

Let

αT = qT (213)
ûT = 0 (214)

then move your way from t = T − 1 to t = 1 using the following recursion

εt = (b′αt+1b+ gt)−1b′αt+1a (215)
ût = −εtE[Xt | ot] (216)
αt = a′αt+1(a− bεt) + qt (217)

where E[Xt | ot] is computed using the Kalman filter equations.

8 Appendix

Lemma 8.1. If wi ≥ 0 and β̂ maximizes f(i, β) for all i then

max
β

∑
i

wif(i, β) =
∑
i

wi max
β

f(i, β) (218)

Proof.

max
β

∑
i

wif(i, β) ≤
∑
i

max
β

f(i, β) =
∑
i

wif(i, β̂) (219)

moreover
max
β

∑
i

wif(i, β) ≥
∑
i

f(i, β̂) =
∑
i

wi max
β

f(iβ) (220)

Lemma 8.2. If wi ≥ 0 and

max
β

∑
i

wif(i, β) =
∑
i

wi max
β

f(i, β) (221)

then there is β̂ such that for all i with wi > 0

f(i, β̂) = max
β

f(i, β) (222)

25

Proof. Let
f(i, β̂i) = max

β
f(i, β) (223)

and
f(i, β̂) = max

β

∑
i

wif(i, β) (224)

then ∑
i

wi(f(i, β̂i)− f(i, β̂)) = 0 (225)

Thus, since
f(i, β̂i)− f(i, β̂) ≥ 0 (226)

it follows that
f(i, β̂) = f(i, β̂i) = max

β
f(i, β) (227)

for all i such that wi > 0.

Lemma 8.3 (Optimization of Quadratic Functions). This is one of the most
useful optimization problem in applied mathematics. Its solution is behind a
large variety of useful algorithms including Multivariate Linear Regression, the
Kalman Filter, Linear Quadratic Controllers, etc. Let

ρ(x) = E[(bx− C)′a(bx− C)] + x′d x (228)

where a and d are symmetric positive definite matrices and C is a random vector
with the same dimensionality as bx. Taking the Jacobian with respect to x and
applying the chain rule we have

Jxρ = E[Jbx−C(bx− C)′a(bx− C) Jx(bx− C)] + Jxx
′d x (229)

= 2E[(bx− C)′ab] + 2x′d (230)
∇xρ = (Jx)′ = 2b′a(bx− µ) + 2d x (231)

where µ = E[C]. Setting the gradient to zero we get

(b′ab+ d)x = b′aµ (232)

This is commonly known as the Normal Equation. Thus the value x̂ that mini-
mizes ρ is

x̂ = hµ (233)

where
h = (b′ab+ d)−1b′a (234)

Moreover

ρ(x̂) = (bhµ− C)′a(bhµ− C) + µ′h′dhµ (235)
= µ′h′b′abhµ− 2µ′h′b′aµ+ E[C ′aC] + µ′h′dhµ (236)

26

Now note

µ′h′b′abhµ+ µ′h′dhµ = µ′h′(b′ab+ d)hµ (237)

= µ′a′b(b′ab+ d)−1(b′ab+ d)(b′ab+ d)−1b′aµ (238)

= µ′a′b(b′ab+ d)−1b′aµ (239)
= µ′h′b′aµ (240)

Thus

ρ(x̂) = E[C ′aC]− µ′h′b′aµ (241)

An important special case occurs if C is a constant, e.g., it takes the value c
with probability one. In such case

ρ(x̂) = c′ac− c′h′b′ac = c′kc (242)

where

k = a− h′b′a = a− a′b(b′ab+ d)−1b′a (243)

For the more general case it is sometimes useful to express (241) as follows

ρ(x̂) = E[C ′aC]− µ′h′b′aµ = E[C ′(a− h′b′a)C] + E[(C − µ)′h′b′a(C − µ)]
(244)

Lemma 8.4 (Quadratic Regression). We want to minimize

ρ(w) =
∑
i

(
ai + bTi w + wT ciw

)2

(245)

where ai is a scalar, bi, w are n-dimensional vectors and ci an n × n symet-
ric matrix2. We solve the problem iteratively starting at a weight vector wk
linearizing the quadratic part of the function and iterating.

Linearizing about wk we get

wT ciw ≈ wTk ciwk + 2wTk ci(w − wk)

= −wTk ciwk + 2wTk ciw (246)

Thus

ai + bTi w + wT ciw ≈ ai − wTk ciwk + (bi + 2ciwk)Tw (247)

This results in a linear regression problem with predicted variables in a vector y
with components of the form

yi = −ai + wTk ciwk (248)

2We can always symetrize ci with no loss of generality.

27

and predicting variables into a matrix x with rows

xi = (bi + 2ciwk)T (249)

with

wk+1 = (x′x)−1x′y (250)

28

