
Primer on the Discrete Fourier Transform

January 12, 2009

Copyright c© 2004 Javier R. Movellan.

1

1 The Discrete Fourier Transform

In mathematics, the discrete Fourier transform (DFT) is one
of the specific forms of Fourier analysis. It transforms one func-
tion into another, which is called the frequency domain repre-
sentation, or simply the DFT, of the original function (which is
often a function in the time domain). But the DFT requires an
input function that is discrete and whose non-zero values have a
limited (finite) duration. Such inputs are often created by sam-
pling a continuous function, like a person’s voice. And unlike
the discrete-time Fourier transform (DTFT), it only evaluates
enough frequency components to reconstruct the finite segment
that was analyzed. Its inverse transform cannot reproduce the
entire time domain, unless the input happens to be periodic (for-
ever). Therefore it is often said that the DFT is a transform for
Fourier analysis of finite-domain discrete-time functions. Since
the input function is a finite sequence of real or complex num-
bers, the DFT is ideal for processing information stored in com-
puters. The DFT can be computed efficiently in practice using a
fast Fourier transform (FFT) algorithm. Since FFT algorithms
are so commonly employed to compute the DFT, the two terms
are often used interchangeably in colloquial settings. (From the
Wikepedia)

Let h[0], h[1], · · ·h[N − 1] be a sequence of complex numbers sampled at
times 0,∆t, · · · (N − 1)∆t, where ∆t is the sampling period. We note (see
Appendix) that the sequence h[0] · · ·h[N − 1] can always be expressed as a
weighted sum of complex sinusoids

h[n] =
N−1∑
k=0

ake
j2π n

N
k (1)

(2)

where

ak
def
=

1

N

N−1∑
n=0

h[n]e−j2π
k
N
n (3)

2

We now define the continuous time function h() as an approximation to the
original continuous time function from which the h[] sequence was obtained

h(x∆t) =
N−1∑
k=0

ake
j2π k

N
x, for x ∈ R (4)

or equivalently

h(t) =
N−1∑
k=0

ake
j2π k

N
t

∆t (5)

=
N−1∑
k=0

ake
j2πfk t (6)

(7)

where

fk
def
=

k

N∆t

(8)

Thus,

ĥ(f) =
N−1∑
k=0

ak δ(f − fk) (9)

We then define the DFT ĥ[] in terms of the ak coefficients that determine
the FT of h()

ĥ[k] = Nak =
N−1∑
n=0

h[n]e−j2π
k
N
n (10)

Note that h[k] represents the amplitude of the impulse δ of the Fourier trans-
form of h() evaluate at the frequency fk = k/(N∆t), which is k times the
fundamental frequency 1/(k∆t).

3

1.1 Periodicity

The approximating coontinous time function h() is periodic with period N∆t.
To see why note

h(t+N∆t) =
N−1∑
k=0

ake
j2πk

t+N∆t
N∆t (11)

=
N−1∑
k=0

ake
j2πk t

N∆t ej2πk =
N−1∑
k=0

ake
j2πk t

N∆t = h(t) (12)

where we used the fact that for any integer k

ej2πk = cos(2πk) + j sin(−2πk) = 1 (13)

The DFT is also periodic with period N , i.e.

h[k +N] = h[k −N] = h[k] (14)

To see why note

h[k +N] =
N−1∑
n=0

h[n]e−j2π
k+N

N
n (15)

=
N−1∑
n=0

h[n]e−j2π
k
N
ne−j2πn (16)

=
N−1∑
n=0

h[n]e−j2π
k
N
n = h[k] (17)

1.2 Interpreting of the DFT

We interpet the sequence h[0], · · · , h[N − 1] as samples from the periodic
continuous time signal h() defined as follows

4

h(t) =
N−1∑
k=0

ake
j2π k

N
t

∆t (18)

=
N−1∑
k=0

ake
j2πfk t (19)

fk
def
=

k

N∆t

(20)

ak
def
=

1

N

N−1∑
n=0

h[n]e−j2π
k
N
n (21)

We note that h() is one of the infinite possible set of continuous time signals
that could have generated the sequence h[]. As such we view it as an ap-
proximation to the original signal. The approximating signal h() is periodic
with fundamental frequency F0 = 1/(N∆t) and with N − 1 consecutive har-
monics of the fundamental frequency. We note the fundamental frequency,
and harmonics, are measured in cycles per unit of time, where the unit of
time is the same as the one used for the sampling period ∆t. For example,
if ∆t is measured in seconds, then Fo is measuredin cycles per second (i.e.,
Hertz). If we choose ∆t itself as the unit of measurement then ∆t = 1 and
Fo is measured in cycles per sample.

The output of DFT is an N -dimensional vector. For N odd the vector is
typically organized as follows

Index Frequency
0 0
1 Fo
2 2Fo
· · ·
N−1

2
N−1

2
Fo

N−1
2

+ 1 (1− N+1
2

)Fo
N−1

2
+ 2 (2− N+1

2
)Fo

· · ·
N − 2 −2Fo
N − 1 −Fo

5

To construct the table we used the fact that since the DFT is periodic

N − 1

2
+ k ≡ N − 1

2
+ k −N = k − N + 1

2
(22)

N − k ≡ N − k +N = −k (23)

If N = 5 the DFT would be organized as follows

Index Frequency
0 0
1 Fo
2 2Fo
3 −2F0

4 −1F0

Note the transition from positive to negative frequencies occurs for the first
positive frequency whose value would be equal to or larger than the Nyquist
frequency

1

2∆t

=
N

2
Fo (24)

If N is even the vector is organized as follows

Index Frequency
0 0
1 Fo
2 2Fo
· · ·
N
2

±N
2
Fo

· · ·
N − 2 −2Fo
N − 1 −Fo

Note the transition from positive to negative frequencies also occurs for the
first positive frequency whose value would equal to or be larger than the
Nyquist frequency. For example, if N = 6 the vector would be organized as

6

follows
Index Frequency

0 0
1 Fo
2 2Fo
3 ±3F0

4 −2Fo
5 −1Fo

7

2 Appendix

2.1 The DFT

A sequence h[0], · · · , h[N − 1] of complex numbers can be represented as a
sum of complex sinusoids

h[n] =
N−1∑
k=0

ake
j2π k

N
n (25)

where

ak =
1

N

N−1∑
n=0

h[n]e−j2π
n
N
k (26)

Informal Proof:

N−1∑
k=0

ake
j2π k

N
n =

1

N

N−1∑
k=0

N−1∑
n=0

h[n]e−j2π
n
N
kej2π

k
N
u (27)

=
1

N

N−1∑
k=0

N−1∑
n=0

h[n]e−j2πk
u−n

N =
1

N

N−1∑
k=0

h[u] +
∑
n 6=u

h[n]
N∑
k=0

e−j2π
u−n

N
k (28)

h[u] +
∑
n6=u

h[n]
N∑
k=0

e−j2π
k
N = h[u] (29)

For the last two steps we used the fact that ej2π = ej2π(u−n). Moreover note
that the complex numbers ej2π0 = ej2π1/N · · · = ej2π(N−1)/N are vectors of
lenght 1, equidistantly located around the complex unit circle. Therefore
their sum is at the center of the complex unit circle, i.e.,

N∑
k=0

e−j2π
k
N = 0 (30)

2.2 Using the Fast Fourier Transform in Matlab

% Illustrates how to get the discrete time FFT of a Gaussian function and

% how to interpret it with respect to the continuous time Fourier Transform

8

%

% Copyright @ Javier R. Movellan, UCSD, 2009

clear

clf

% (1) Choose a unit of measurement for the time axis, e.g. seconds.

% (2) Choose the sampling period using the chosen units

dt= 0.1; % time in seconds.If dt =1; the unit of measurement is the time

% between samples and the frequency is measured in cycles per

% sample.

% (3) Choose the number of samples

N =35;

% (4) The fft assumes the samples come from a periodic signal starting at

% t=0, dt, 2 dt, ... (N-1) dt. The period of the signal is

% nSamples*dt. Thus implicitly we are defining how the signal would

% behave for negative values of t. We have that s(t - N dt) = s(t). Thus

% s((N-k) dt) = s((N-k -N) dt) = s(-kdt)

for n=1:N

if (n-1< N/2)

t(n) = (n-1)* dt; % we start at time 0

else

t(n) = ((n-1) - N)*dt;

end

end

% (5) We now populate our vector with the signal we want to get the fft

% for.

a= 3;

s = exp(-pi*(a*t).^2);

% (6) Get the fft

S = fft(s);

9

% (6) The k element of the fft vector is the continuous fourier transform of the

% signal evaluated at the frequency f = (k-1)* 1/(N dt), so S[1] = F(0), S[2]

% = F(1/dt), S(3) = F(2/dt). However the fft is also periodic so F(f) =

% F(f+ 1/dt) = F(1 - 1/dt). Thus S[N-k] = F((N-k+N)/(N dt)) = F (-k /(Ndt))

% . Below we rearrange things so the negative frequencies are to the left

% and the positive frequencies to the right

for n=1: N

if(n-1 < N/2)

f(n) = (n-1)/(N*dt); % frequency in cycles per unit of time

else

f(n) = ((n-1)-N)/(N*dt); % frequency in cycles per unit of time

end

end

% Plot and verify the results

subplot(6,1,1)

scatter(t,s)

xlabel(’Time in Seconds’)

% To verify things we’ll plot the half magnitude interval

line(0.4697 *[1/a 1/a] , [0 max(s)])

line(-0.4697 *[1/a 1/a] , [0 max(s)])

line([min(t), max(t)] ,max(s)* [0.5 0.5])

subplot(6,1,2)

scatter(f,abs(S))

xlabel(’Frequency in Hertz’)

ylabel(’Magnitude’)

% To verify things we’ll plot the half magnitude interval

line(0.4697 *[a a] , [0 max(S)])

line(-0.4697 *[a a] , [0 max(S)])

line([min(f), max(f)] ,max(S)* [0.5 0.5])

% (7) If real(S) or imag(S) is very small the phase spectrum runs into

% numerical issues with matlab. Just make very small numbers exactly zero

10

tiny= 10^(-10);

for n=1:N

if(abs(real(S(n)) < tiny)) S(n) = j*imag(S(n)); end

if(abs(imag(S(n)) < tiny)) S(n) = real(S(n)); end

end

subplot(6,1,3)

scatter(f,phase(S))

xlabel(’Frequency in Hertz’)

ylabel(’Phase’)

% (8) The matlab functions fftshift and ifftshift can be used to

% simplify all the index shifting. Here is how to use them

subplot(6,1,4)

t2 = dt*(- floor(N/2):floor(N/2));

s2 = exp(-pi*(a*t2).^2);

s2= ifftshift(s2);

% we Note that g2 =s

xlabel(’Double Check’)

S2 = fft(s2);

S2= ifftshift(S2);

% verify we get same results

subplot(6,1,4)

scatter(1:N, fftshift(s2))

xlabel(’Double Check’)

subplot(6,1,5)

scatter(1:N, abs(S2))

xlabel(’Double Check’)

subplot(6,1,6)

for n=1:N

if(abs(real(S2(n)) < tiny)) S2(n) = j*imag(S2(n)); end

if(abs(imag(S2(n)) < tiny)) S2(n) = real(S2(n)); end

11

end

scatter(1:N, phase(S2))

xlabel(’Double Check’)

12

2.3 Using the Matlab conv function

% Filters a signal using the conv function

%

% s : The signal

% k : The filter kernel (time flipped impulse response

% c: Integer with index for origin of he kernel, points to

% the right of the origin are non-causal.

% z: The output of the filter to each point of s. The outputs for the

% left and right limits of s are obtained by zero padding s.

%

%

% Example1; Filter a signal s using a causal ramp filter with 4 time steps

% z = doFilter(s, 1:4, 4)

%

% Example2; Filter a signal s using a ramp filter that looks 3 steps

% into the future

% z = doFilter(s, 1:4, 1)

%

% Copyright Javier R. Movellan,2009, UCSD

function z = doFilter(s,k,c)

z=conv(s,fliplr(k)); % note we need to convolve with the impulse response,

% which is the time flipped version of the kernel

%Matlab automatically pads s with zeros to the left and right.

% We now get rid of the response of the filter at times other than the

% times of the original data

z(1:(length(k)-c))=[];

z(end-(c-2):end)=[];

13

