
Continuous Time Stochastic Optimal Control

Copyright c©Javier R. Movellan

June 7, 2011

Please cite as
Movellan J. R. (2011) Continuous Time Stochastic Optimal Control MPLab

Tutorials, University of California San Diego

1



Consider a dynamical system governed by the following system of stochastic
differential equations

dXt = a(Xt, Ut)dt+ c(Xt, Ut)dBt (1)

where dBt is a Brownian motion differential. One way to think of this equation
is the limit as ∆t → 0 of the following process

∆Xt = a(Xt, Ut)∆t + c(Xt, Ut)
√

∆tZt (2)

where Zt is a vector of independent standard Gaussian random variables.

0.1 The HJB Equation for Finite Horizon Value Functions

Consider a fixed policy π and terminal time T . The value of visiting state x at
time t is defined as follows

v(x, t) = E[
∫ T

t

e−
1
τ (s−t)r(Xs, Us, s)ds+ e−

1
τ (T−t)g(XT ) |Xt = x] (3)

where r is the instantaneous reward, τ the time constant for the temporal dis-
count of the reward, and g is the terminal reward.

For s ≥ t let

Ys
def= v(Xs, s) (4)

Using Ito’s rule we get

dYs = dv(Xs, s) = vt(Xs, s)ds+ vx(Xs, s) · dXs

+
1
2

Tr
(
c(Xs, Us)c′(Xs, Us)vxx(Xs, s)

)
ds (5)

where

Us
def= π(Xs, s) (6)

vt(x, s)
def=
∂v(x, s)
∂s

(7)

vx(x, s) def=
∂v(x, s)
∂x

(8)

vxx(x, s) def=
∂2v(x, s)
∂x∂x′

(9)

Taking expected values given Xt = x, and noting that expected values of
stochastic integrals are zero

dE[Ys |Xt = x]
ds

= E
[
vt(Xs, s) + vx(Xs, s)′a(Xs, Us)

+
1
2

Tr
(
c(Xs, Us)c′(Xs, Us)vxx(Xs, s)

)
|Xt = x

]
(10)

2



Evaluating it at s = t we get

dE[Ys |Xt = x]
ds

∣∣∣∣
s=t

= vt(x, t) + vx(x, t)′a(x, t) +
1
2

Tr
(
c(x, u)c′(x, u)vxx(x, t)

)
(11)

Next we show that the left hand side of the equation above takes the following
form

dE[Ys |Xt = x]
ds

∣∣∣∣
s=t

=
1
τ
v(x, t)− r(x, π(x), t) (12)

First let’s get a better understanding of what this time derivative means

dE[Ys |Xt = x]
ds

= lim
ε→0

1
ε
E[Ys+ε − Ys |Xt = x]

= lim
ε→0

1
ε
E[v(Xs+ε, s+ ε)− v(Xs, s) |Xt = x] (13)

and

dE[Ys |Xt = x]
ds

∣∣∣∣
s=t

= lim
ε→0

1
ε
E[v(Xt+ε, t+ ε)− v(x, t) |Xt = x] (14)

Note

v(x, t) = E[
∫ t+ε

t

e−
1
τ (s−t)r(Xs, Us, s)ds |Xt = x]

+ E[
∫ T

t+ε

e−
1
τ (s−(t+ε))r(Xs, Us, s)ds |Xt = x] e−

1
τ ε

= E[
∫ t+ε

t

e−
1
τ (s−t)r(Xs, Us, s)ds |Xt = x]

+ E[v(Xt+ε, t+ ε) |Xt = x] e−
1
τ ε (15)

and

1
ε

(
E[v(Xt+ε, t+ ε) |Xt = x] e−ε/τ − v(x, t)

)
= −1

ε
E[
∫ t+ε

t

e−
1
τ (s−t)r(Xs, Us, s)ds |Xt = x] (16)

Taking limits on the right hand side of (0.1)

lim
ε→0
−1
ε
E[
∫ t+ε

t

e−
1
τ (s−t)r(Xs, Us, s)ds |Xt = x] = −r(x, π(x), t) (17)

Thus

lim
ε→0

1
ε

(
E[v(Xt+ε, t+ ε) |Xt = x] e−ε/τ − v(x, t)

)
= −r(x, π(x), t) (18)

3



Regarding the left hand side of (0.1), let

f(ε) def= E[v(Xt+ε, t+ ε) |Xt = x] (19)

Thus

1
ε

(
E[v(Xt+ε, t+ ε) |Xt = x] e−

1
τ ε − v(x)

)
=
f(ε)e−

1
τ ε − f(0)
ε

(20)

Using the product rule for derivatives it follows that

lim
ε→0

=
f(ε)g(ε)− f(0)g(0)

ε
= ḟ(0)g(0) + f(0)ġ(0) (21)

where ḟ ġ are the first derivative of f, g. Thus with

g(x) = e−
1
τ x (22)

ġ(x) = −1
τ
g(x) (23)

it follows that

lim
ε→0

=
f(ε)e−

1
τ ε − f(0)
ε

= ḟ(0)− 1
τ
f(0) (24)

where

ḟ(0) = lim
ε→0

f(ε)− f(0)
ε

= lim
ε→0

(
E[v(Xt+ε, t+ ε) |Xt = x]− v(x, t)

)
=
dE[Ys |Xt = x]

ds

∣∣∣∣
s=t

(25)

Thus

lim
ε→0

1
ε

(
E[v(Xt+ε, t+ ε) |Xt = x] e−

1
τ ε − v(x, t)

)
=
dE[Ys |Xt = x]

ds

∣∣∣∣
s=t

− 1
τ
v(x, t) (26)

and using (18)

dE[v(Xt) |Xt = x]
dt

− 1
τ
v(x, t) = −r(x, π(x), t) (27)

From which (12) follows. Putting together (12) and (11) we get the Hamilton
Jacoby Belman equation (HJB) for the value function of a fixed policy π

1
τ v(x, t) = r(x, u, t) + ∂v(x,t)

∂t + ∂v(x,t)
∂x

′
a(x, u) + 1

2Tr
(
c(x, u)c(x, u)′ ∂

2v(x,t)
∂x2

)
u = π(x, t)
v(x, T ) = g(x)e−

1
τ (T−t)

(28)

4



Stochastic Discrete Time Approximation Basically we approximate the
continuous time HJB with a discrete time Bellman equation. From (15) we note

v(x, t) ≈ r(x, π(ut))∆t+ e−∆t/τE[v(Xt+∆t, t+ ∆t) |Xt = x] (29)

We know v(·, T ) so we can approximate v(x, T−∆t) by running the SDE forward
from time T −∆t to time T with initial condition x. We can use this for a set of
states and use function interpolation to get an estimate for all the other states.
This gives us v(·, T − ∆t) we can then keep moving backwards until we reach
the initial timet. One problem with this approach is that it does not use any
knowledge about the spatial derivatives of the value function.

Deterministic Discrete Time Approximation We have the value of v for
time T . If we can get the first and second derivatives of v with respect to
x we can then use the HJB equation to obtain ∂v(x, T ) ∂t. This determines
v(x, T −∆t).

v(x, T −∆t) ≈ v(x, T )−∆t
∂v(x, T )

∂t
(30)

We can then progress backwards in time until we reach the starting time t.
The temporal derivative at time T equals the temporal derivative at time

T −∆t. We approximate approximate v at time T −∆t as a weighted sum of
features of x. The spatial derivaites are then also a weighted sum of features
of x. This results on a regression problem. For a set of sates of interest the
predictors are

−1
τ
v(x, t) + vx(x, t)′a(x, u) +

1
2

Tr
(
c(x, u)c(x, u)′∇2

xxv(x, t)
)

(31)

which are a linear function of features of the state. The predicted values are

−r(x, u, t)− ∂v(x, t)
∂t

(32)

we do non-linear regression to find w. We can then use this to find v for time
step T −∆t for a set of points. We can then move our way backwards until we
reach the startint time t.

5



0.2 The Bellman Equation for the Q function

I have the impression that changing an action at a specific point in time will
not change the value. We may need to divide by dt or something like that. So
this section is ifi Let vπ represent the value function under policy π. Note

vπ(x, t) = τ
{
r(x, u, t) + vπt (x, t) + vπx (x, t) · a(x, u)

+
1
2

Tr
(
c(x, u)c(x, u)′vπxx(x, t)

)}
(33)

where u = π(x, t). Consider what would happen if we defined a new policy π
identical to π except for the fact that at time t it maps x into another action u′,
i.e., π′(x, t) = u′. The value function under the new policy would be as follows

vπ
′
(x, t) = τ

{
r(x, u′, t) + vπ

′

t (x, t) + vπ
′

x (x, t) · a(x, u′)

+
1
2

Tr
(
c(x, u′)c(x, u′)′vπ

′

xx(x, t)
)}

(34)

We can thus think of the value of responding to x at time t with action u and
then following the fixed policy π as follows

Qπ(x, u, t) = τ
{
r(x, u, t) + vπt (x, t) + vπx (x, t) · a(x, u)

+
1
2

Tr
(
c(x, u)c(x, u)′vπxx(x, t)

)}
(35)

Policy improvement: This leads to the following approach to improve a
policy π. For state t and time t define a new policy π′ that chooses an action
u′ such that

Qπ
′
(x, u′, t) > Qπ(x, u, t) (36)

One way to do so would be to have

u′ = u+ ε
∂vπ(x, t)

∂u
(37)

0.3 Optimal Value Function for Finite Horizon Problems

The optimal value function is defined as follows

v̂(x, t) = sup
π
vπ(x, t) (38)

where vπ is the value function with respect to policy π. Thus

v̂(x, t) = sup
π
τ

{
r(x, π(x), t) + vπt (x, t) + vπx (x, t) · a(x, π(x)) +

1
2

Tr
(
c(x, π(x))c(x, π(x))′vπxx(x, t)

)}
(39)

6



and since at the extremum π takes the value of the optimal policy

v̂(x, t) = sup
π
τ

{
r(x, π(x)) + v̂t(x, t) + v̂x(x, t) · a(x, π(x)) +

1
2

Tr
(
c(x, π(x))c(x, π(x))′v̂xx(x, t)

)}
(40)

And since the only part of the equation that depends on π is u = π(x) the HJB
equation for the optimal value function follows

1
τ v̂(x, t) = supu

{
r(x, u) + v̂t(x, t) + v̂x(x, t) · a(x, u) + 1

2Tr
(
c(x, u)c(x, u)′v̂xx(x, t)

)}
v̂(x, T ) = g(x)

(41)

0.4 Value Function for Infinite Horizon Problems

We can think of the infinite horizon case as a the limiting case of a finite horizon
problem.

v(x) = lim
T→∞

E[
∫ T

t

e−
1
τ (s−t)r(Xs, Us) s |Xt = x, π] (42)

Note we made the reward to be independent of the time t, in which case the
value function will also be independent of t. Thus the derivative of v with
respect to time needs to be zero and the HJB for the value function follows

1
τ v(x) = r(x, u) + vx(x) · a(x, u) + 1

2Tr
(
c2(x, u)vxx(x)

)
u = π(x)

(43)

Using the same logic, we get the HJB for the optimal value function

1
τ v̂(x) = supu

{
r(x, u) + v̂x(x) · a(x, u) + 1

2Tr
(
c2(x, u)v̂xx(x)

)}
(44)

0.5 An important special case

Consider a process defined by the following stochastic differential: equation

dXt = a(Xt)dt+ b(Xt)Utdt+ c(Xt)dBt (45)

For an arbitrary t we let

7



v(x, t) def= max
π

E[
∫ T

t

e−
1
τ (s−t) r(Xs, Us) ds+ gT (XT ) |Xt = x, π] (46)

where Us = π(Xs) and the instantaneous reward takes the following form

r(x, u) def= g(x)− 1
2
u′qu (47)

In this case the HJB equation looks as follows

1
τ
v(x, t) = max

u

{
g(x)− 1

2
u′qu+

∂v(x, t)
∂t

+ a(x)′
∂v(x, t)
∂x

+ u′b(x)′
∂v(x, t)
∂x

+
1
2

Tr[c(x)c(x)′
∂2v(x, t)
∂x2

]
}

(48)

Most importantly the maximum over u can be computed analytically. Taking
the gradient of the right hand side of (56) with respect to u and setting it to
zero we get

−qu+ b(x)′
∂v(x, t)
∂x

= 0 (49)

Thus the optimal action is

û = q−1b(x)′
∂v(x, t)
∂x

(50)

If q is not full rank then there is an infinite number of optimal actions. We can
choose one by using the pseudo-inverse of q. We need to be careful about q. For
example, consider the 1-D case. If we let q = 0 the optimal gain would go to
infinity, which basically sets the state to zero in an infinitesimal time dt.

Substituting the optimal action into the HJB equation we get

1
τ
v(x, t) = g(x)− 1

2
û′qû+

∂v(x, t)
∂t

+ a(x)′
∂v(x, t)
∂x

+ û′qû+
1
2

Tr[c(x)c(x)′
∂2v(x, t)
∂x2

] (51)

Simplifying, the HJB equation for the optimal value function looks as follows

−∂v(x,t)
∂t = − 1

τ v(x, t) + g(x) + 1
2 û
′qû+ ∂v(x,t)

∂x

′
a(x)

+ 1
2Tr[c(x)c(x)′ ∂

2v(x,t)
∂x2 ]

û(x) = q−1b(x)′ ∂v(x,t)
∂x

(52)

8



0.6 Action Dependent Noise

We can generalize the previous case to include action dependent noise

dXt = a(Xt)dt+ b(Xt)Utdt+
(
c(Xt) +

∑
k

Uk,thk(Xt)
)
dBt (53)

where Uk,t is the kth component of Ut. For an arbitrary t we let

v(x, t) def= max
π

E[
∫ T

t

e−
1
τ (s−t) r(Xs, Us) ds+ gT (XT ) |Xt = x, π] (54)

where Us = π(Xs) and the instantaneous reward takes the following form

r(x, u) def= g(x)− 1
2
u′q(x, t)u (55)

In this case the HJB equation looks as follows

1
τ
v(x, t) = max

u

{
g(x)− 1

2
u′q̃(x, t)u+

∂v(x, t)
∂t

+ a(x)′
∂v(x, t)
∂x

+ u′b(x)′
∂v(x, t)
∂x

+
1
2

Tr
(
c(x)c(x′)

∂2v(x, t)
∂x2

)}
(56)

where

q̃(x, t) = q(x, t) + w(x, t) (57)

and

w(x, t)i,j = −Tr
(
hi(x)hj(x)′

∂2v(x, t)
∂x2

)
(58)

Note that having noise proportional to the action is equivalent to having a state
dependent quadratic cost on the action. The maximum over u can be computed
analytically. Taking the gradient of the right hand side of (56) with respect to
u and setting it to zero we get

−(q̃(x, t)u+ b(x)′
∂v(x, t)
∂x

= 0 (59)

Thus the optimal action is

û = (q̃(x, t))−1b(x)′
∂v(x, t)
∂x

(60)

If q̃ is not full rank then there is an infinite number of optimal actions. We can
choose one by using the pseudo-inverse of q̃. We need to be careful about q. For
example, consider the 1-D case. If we let q = 0 the optimal gain would go to
infinity, which basically sets the state to zero in an infinitesimal time dt.

9



Substituting the optimal action into the HJB equation we get

1
τ
v(x, t) = g(x)− 1

2
û′q̃(x, t)û+

∂v(x, t)
∂t

+ a(x)′
∂v(x, t)
∂x

+ û′q̃(x, t)û+
1
2

Tr[c(x)c(x)′
∂2v(x, t)
∂x2

] (61)

Simplifying, the HJB equation for the optimal value function looks as follows

−∂v(x,t)
∂t = − 1

τ v(x, t) + g(x) + 1
2 û
′q̃(x, t)û+ ∂v(x,t)

∂x

′
a(x)

+ 1
2Tr[c(x)c(x)′ ∂

2v(x,t)
∂x2 ]

û(x) = q̃−1(x, t)b(x)′ ∂v(x,t)
∂x

q̃(x, t) = q(x, t) + w(x, t)
w(x, t)i,j = Tr[hi(x)hj(x)′ ∂

2v(x,t)
∂x2 ]

(62)

0.7 Linear Quadratic Tracker and Regulator

Let

dXt = aXt + bUt + cdBt (63)

with

v(x, t) = E[
∫ T

t

r(Xs, Us)e−
1
τ (s−t)ds |Xt = x, π] (64)

where

Us = π(Xs) (65)
r(x, u) = −(x− ξ)′p(x− ξ)− u′qu (66)

where the target state ξ can be a function of time. This corresponds to the
problem of having the state Xt track the trajectory ξt. We assume the value
function takes the following form

v(x, t) = −
(
x′αtx− 2β′tx+ γt

)
(67)

Thus,

∂v(x, t)
∂x

= 2(βt − ᾱtx) (68)

∂2v(x, t)
∂x2

= −2ᾱt (69)

∂v(x, t)
∂t

= −x′α̇tx+ 2β̇′tx− γ̇t (70)

10



where

ᾱt =
αt + α′t

2
(71)

α̇t =
dαt
dt

(72)

β̇t =
dβt
dt

(73)

γ̇t =
dγt
dt

(74)

Consider the optimal HJB equation (62)

−∂v(x, t)
∂t

= −1
τ
v(x, t) + g(x) + û′qû+

∂v(x, t)
∂x

′
ax

+
1
2

Tr[c(x)′c(x)
∂2v(x, t)
∂x2

] (75)

where

g(x) = −(x− ξ)′p(x− ξ) (76)

û(x) =
1
2
q−1b′

∂v(x, t)
∂x

= q−1b′(βt − ᾱtx) (77)

The control law can be expressed as a standard feedback controller

û(x) = kt(ωt − xt) (78)

kt = q−1b′ᾱt (79)

ωt = ᾱ−1
t βt (80)

where ᾱ−1
t is the pseudoinverse of ᾱt, kt is the feedback gain and ωt is a virtual

target state tracked by the feedback controller.
Thus

x′α̇tx− 2β̇′tx+ γ̇t =
1
τ
x′αtx−

2
τ
β′tx+

1
τ
γ − (x− ξt)′p(x− ξt) (81)

+ (βt − ᾱtx)′bq−1b′(βt − ᾱtx) (82)
+ 2(βt − ᾱtx)′ax− Tr[c′cᾱt] (83)

Expanding some terms

x′α̇tx− 2β̇′tx+ γ̇t =
1
τ
x′αtx−

2
τ
β′tx+

1
τ
γ (84)

− x′px+ 2ξ′tpx− ξ′tpξt (85)

+ x′ᾱtbq
−1b′ᾱtx− 2β′tbq

−1b′ᾱtx+ β′tbq
−1b′βt (86)

+ 2β′tax− 2x′ᾱtax− Tr[c′cᾱt] (87)

11



Gathering quadratic, linear, and constant terms we get the continuous time
Ricatti equations

ût(x) = kt(ωt − xt)
kt = q−1b′ᾱt
ωt = ᾱ−1

t βt
v(x, t) = −x′αtx+ 2β′tx− γt
α̇t = 1

τ αt − p+ ᾱtbq
−1b′ᾱt − 2ᾱta

β̇t = − 1
τ βt − p

′ξt + ᾱtbq
−1b′βt − a′βt

γ̇t = 1
τ γt − ξ

′
tpξt + β′tbq

−1b′βt − Tr[c′cαt]
ᾱt = (αt + α′t)/2
αT = pT
βT = pT ξT
γT = ξ′T pT ξT

(88)

Alternatively the optimal action can be computed using the following procedure
that does not require to take the pseudoinverse of ᾱt

ût(x) = q−1b′(βt − ᾱtxt) (89)

For initialization we used the fact that x′ay = x′(a+ a′)y/2.
We can solve this equation numerically using Euler’s method. We start at

time T . This gives us the temporal derivatives for α, β, γ. Their values at time
t − ∆t can be obtained from those derivatives. We can then iterate until we
reach the current time t. Below shows a simple example code.

function [omega, k, alpha beta, gamma]= ctfhlqt(xi,a,b,c,p,pT,q,tau,dt)

s = length(xi);
itau = 1/tau;

qinv = pinv(q);
qinvbt = qinv*b’;

alpha = pT;
beta = pT*xi(:,s);
gamma = xi(:,s)’*pT*xi(:,s);
nu = length(q);
nx = length(a);
omega = zeros(nx,s);
k2= zeros(nu,nx,s);

12



for t=s:-1: 1
alphaBar= (alpha + alpha’)/2;
dalpha = alpha*itau -p + alphaBar*b*qinv*b’*alphaBar - 2*alphaBar*a;
dbeta = -beta*itau - p’*xi(:,t)+ alphaBar*b*qinv*b’*beta - a’*beta;

dgamma = - gamma*itau - xi(:,t)’*p*xi(:,t) + beta’*b*qinv*beta- ...
trace(c’*c*alpha);
omega(:,t) = pinv(alphaBar)*beta;
k(:,:,t) = qinvbt*alphaBar;
alpha = alpha - dt*dalpha;
beta = beta - dt*dbeta;
gamma = gamma - dt*dgamma;

end

Linear Quadratic Regulator A special case of the linear quadratic tracker
is the linear quadratic regulator. In this case ξt = 0 for all t.

Thus

αT =
p+ p′

2
(90)

βT = 0 (91)
γt = 0 (92)

The update equation for β show that in this case β̇T = 0 and therefore βt = 0.
Thus the update equations for the linear quadratic regulator are as follows

ût(x) = −ktx (93)

kt = q−1b′ᾱt (94)

α̇t =
1
τ
αt − p+ ᾱtbq

−1b′ᾱt − 2ᾱta (95)

γ̇t =
1
τ
γt − Tr[c′cαt] (96)

0.8 Feedback Linearization

Proposition 0.1. Consider a process of the form

dXt = atXtdt+ bt f(Xt, Ut, t)dt+ ctdBt (97)

where a, b are fixed matrices, Ut is a control variable and f is a function such
that for every x, t the mapping between Ut and f(Xt, Ut, t) is bijective, i.e. there
is a function h such that for every x, y, t

h(x, f(x, u, t), t) = u (98)

13



Let the instantaneous reward function take the following form

r(x, u, t) = −(ξt − xt)′pt(ξt − xt)− f(xt, ut, t)′qtf(xt, ut, t) (99)

where ξ is a desired state trajectory. Then the following policy is optimal:

Ut = h(Xt, Yt, t) (100)

where Yt is the solution to the following LQT control problem

dXt = atXt dt+ btYt dt+ ct dBt (101)

Proof. Let the control process U be defined as follows

Ut = π(Xt, t) (102)

where π is a control policy. Let the virtual control policy λ be defined a follows

Yt = λ(Xt, t) = f(Xt, Ut, t) (103)

Note π and λ are not independent: For every policy π there is a equivalent
policy λ:

λ(Xt, t) = f(Xt, π(Xt, t), t) (104)

Moreover for every virtual policy λ there is an equivalent policy π

Ut = π(Xt, t) = h(Xt, λ(Xt, t), t) (105)

We note that when expressed in terms of the Y variables, the control problem
is linear quadratic

dXt = aXtdt+ bYtdt+ cdBt (106)
r(x, y, t) = x′qtx+ y′gty (107)

Let λ̂ be the optimal policy mapping states to virtual actions, as found using
the standard LQT algorithm on (106), (107). Let

π̂(Xt, t) = h(Xt, λ(Xt, Yt, t), t) (108)

Suppose there is a policy π∗ mapping states to actions better than π̂. Thus the
policy

λ∗(Xt, t) = f(Xt, π
∗(Xt, t), t) (109)

should be better than λ̂, which is a contradition.

This is a remarkable result. It let’s us solve optimally a non-linear control
problem. The key is that we lose control over the action penalty term. Rather
than having the penalty be quadratic with respect to the actions Ut, which could
be things like motor torques, we have to use a penalty quadratic with respect
to f(Xt, Ut, t).

14



0.9 Nonlinear Control

Here we present a recent approach to non-linear continuous time for the special
case in 0.5. The approach is based on (?) but here we we adapt it to the finite
horizon problem. We will assume v can be expressed as a linear combination of
known features of the state x, i.e.,

v(x, t) = φ(x)′w(t) =
nf∑
i=1

φi(x)wi(t) (110)

where φ : Rnx → Rnf is a known function that maps each state x into nf
features of that state. w ∈ Rnf is an unknown weight vector that tells us how
to combine the state features to obtain the value function of a state. Thus

∂v(x, t)
∂x

=
nf∑
i=1

φ̇i(x)wi(t) = φ̇(x)w(t) (111)

where

φ̇(x) def= ∇xφ(x) (112)

and φ̇ is an nx × nf matrix whose columns are the φ̇i terms

φ̇ = [φ̇1, · · · , φ̇nf ] (113)

Moreover

∂2v(x, t)
∂x2

=
nf∑
i=1

wi(t)φ̈i(x) (114)

where φi is an nx × nx Hessian matrix

φ̈i(x) = ∇2
xφi(x) (115)

Thus the HJB equation takes the following form

−∂v(x, t)
∂t

=− 1
τ
φ(x)′w(t) + g(x) + a(x)′φ̇(x)w(t)

+
1
4
w′(t)φ̇(x)′b(x)q−1b(x)′φ̇(x)w(t)

+
1
4

Tr[c(x)′c(x)
nf∑
i=1

φ̈i(x)wi(t)] (116)

Discretizing in time

∂v(x, t)
∂t

=
1

∆t
v(x, t+ ∆t)− 1

∆t
v(x, t) (117)

=
1

∆t
v(x, t+ ∆t)− 1

∆t
φ(x)′w(t) (118)

15



Collecting terms constant, linear and quadratic with respect to w we get

g(x) +
1

∆t
v(x, t+ ∆t)

+
(
φ̇(x)′a(x) + h(x)− (

1
τ

+
1

∆t
)φ(x)

)′
w(t)

+
1
2
w′(t)φ̇(x)′b(x)q−1b(x)′φ̇(x)w(t) = 0 (119)

where h(x) is an nf dimensional vector whose ith element is defined as follows

hi(x) =
1
2

Tr[c′(x)c(x)φ̈i(x)] (120)

This gives us as the key for an algorithm to find v(x, t): If we knew v(x, t +
∆t), φ̇(x), φ̈(x) we could search for values of w(t) that satisfy (119).

If we have a explicit form for gT (x) then we just let v(x, T ) = gT (x). Oth-
erwise we just need to find a w(T ) such that

φ(x)′w(T ) ≈ gT (x) (121)

from a sample of states {x1, x2, · · ·xns} where xi ∈ <nx . These states can be
chosen in any way we want. w(T ) can be found by solving the following linear
regression problem

ρ(w(T )) =
ns∑
i=1

[
gT (x)− φ(xi)′w(T )

]2
(122)

For t < T we choose either the same sample or a different of sample states in
any way we want. We let the error at time t defined as follows

ρ(w(t)) =
ns∑
i=1

[
ai(t) + b′i(t)w(t) + w(t)′ci(t)w(t)

]2
(123)

where

ai(t) = g(xi) +
1

∆t
v(xi, t+ ∆t) (124)

bi(t) = φ̇(xi)′a(xi) + h(xi)− (
1
τ

+
1

∆t
)φ(xi) (125)

ci(t) =
1
4
φ̇(xi)′b(xi)q−1b(xi)′φ̇(xi) (126)

This is a Quadratic Regression problem that can be solved using iterative meth-
ods (see Appendix).. Unfortunately this problem has local minima (or difficult
plateaus) . Thus it is important to get good starting points. The solution for
time T is unique and we can use it as the starting point for time t−∆t. Provided
∆t is small, this should be a good starting solution. For some reason, starting
points close to zero seem to also work well. Note to compute the ai(t) terms

16



we need v(x, t+ ∆t). We can thus solve the problem by doing a backward pass,
starting at time T .

Another important issue s to have enough samples so that the regression
problem to estimate w(t) is not underconstrained. If the number of samples is
small one possibility is to use something like Bayesian regression which allows
for sequential learning of the parameters.

Requirements:

• a(x), b(x) can be learned from examples using non-linear regression with
error

e(x) = ∆x− a(x)∆t + b(x)u∆t (127)

• c(x) can be obtained from model’s error

c(x)c(x)′ = Cov(∆X/∆t − a(X)− b(X)U) (128)

• q the matrix for the quadratic error of the action.

• A way to sample from g(x) and gT (x), the cost of the state.

0.9.1 Using Gaussian Radial Basis Functions

Gaussian functions centered at a fixed set of states µ1 · · ·µnf , and with fixed
precision matrices νi can be used as feature functions, i.e.,

φi(x) = exp
(
− 1

2
(xi − µi)′νi(xi − µi)

)
(129)

where µi is a fixed nx dimensional vector and νi is an nx×nx symmetric positive
definite matrix. Thus in this case

φ̇i(x) = φi(x) νi (µi − x) (130)

φ̈(x) = φi(x)
(
νi (x− µi) (x− µi)′ νi − νi

)
(131)

1 Appendix

Lemma 1.1. If wi ≥ 0 and β̂ maximizes f(i, β) for all i then

max
β

∑
i

wif(i, β) =
∑
i

wi max
β

f(i, β) (132)

Proof.

max
β

∑
i

wif(i, β) ≤
∑
i

max
β

f(i, β) =
∑
i

wif(i, β̂) (133)

17



moreover
max
β

∑
i

wif(i, β) ≥
∑
i

f(i, β̂) =
∑
i

wi max
β

f(iβ) (134)

Lemma 1.2. If wi ≥ 0 and

max
β

∑
i

wif(i, β) =
∑
i

wi max
β

f(i, β) (135)

then there is β̂ such that for all i with wi > 0

f(i, β̂) = max
β

f(i, β) (136)

Proof. Let
f(i, β̂i) = max

β
f(i, β) (137)

and
f(i, β̂) = max

β

∑
i

wif(i, β) (138)

then ∑
i

wi(f(i, β̂i)− f(i, β̂)) = 0 (139)

Thus, since
f(i, β̂i)− f(i, β̂) ≥ 0 (140)

it follows that
f(i, β̂) = f(i, β̂i) = max

β
f(i, β) (141)

for all i such that wi > 0.

Lemma 1.3 (Optimization of Quadratic Functions). This is one of the most
useful optimization problem in applied mathematics. Its solution is behind a
large variety of useful algorithms including Multivariate Linear Regression, the
Kalman Filter, Linear Quadratic Controllers, etc. Let

ρ(x) = E[(bx− C)′a(bx− C)] + x′d x (142)

where a and d are symmetric positive definite matrices and C is a random vector
with the same dimensionality as bx. Taking the Jacobian with respect to x and
applying the chain rule we have

Jxρ = E[Jbx−C(bx− C)′a(bx− C) Jx(bx− C)] + Jxx
′d x (143)

= 2E[(bx− C)′ab] + 2x′d (144)
∇xρ = (Jx)′ = 2b′a(bx− µ) + 2d x (145)

18



where µ = E[C]. Setting the gradient to zero we get

(b′ab+ d)x = b′aµ (146)

This is commonly known as the Normal Equation. Thus the value x̂ that mini-
mizes ρ is

x̂ = hµ (147)

where
h = (b′ab+ d)−1b′a (148)

Moreover

ρ(x̂) = (bhµ− C)′a(bhµ− C) + µ′h′dhµ (149)
= µ′h′b′abhµ− 2µ′h′b′aµ+ E[C ′aC] + µ′h′dhµ (150)

Now note

µ′h′b′abhµ+ µ′h′dhµ = µ′h′(b′ab+ d)hµ (151)

= µ′a′b(b′ab+ d)−1(b′ab+ d)(b′ab+ d)−1b′aµ (152)

= µ′a′b(b′ab+ d)−1b′aµ (153)
= µ′h′b′aµ (154)

Thus

ρ(x̂) = E[C ′aC]− µ′h′b′aµ (155)

An important special case occurs if C is a constant, e.g., it takes the value c
with probability one. In such case

ρ(x̂) = c′ac− c′h′b′ac = c′kc (156)

where

k = a− h′b′a = a− a′b(b′ab+ d)−1b′a (157)

For the more general case it is sometimes useful to express (155) as follows

ρ(x̂) = E[C ′aC]− µ′h′b′aµ = E[C ′(a− h′b′a)C] + E[(C − µ)′h′b′a(C − µ)]
(158)

Lemma 1.4 (Quadratic Regression). We want to minimize

ρ(w) =
∑
i

(
ai + b′iw + w′ciw

)2

(159)

where ai is a scalar, bi, w are n-dimensional vectors and ci an n × n symet-
ric matrix1. We solve the problem iteratively starting at a weight vector wk
linearizing the quadratic part of the function and iterating.

1We can always symetrize ci with no loss of generality.

19



Linearizing about wk we get

w′ciw ≈ w′kciwk + 2w′kci(w − wk)
= −w′kciwk + 2w′kciw (160)

Thus

ai + b′iw + w′ciw ≈ ai − w′kciwk + (bi + 2ciwk)′w (161)

This results in a linear regression problem with predicted variables in a vector y
with components of the form

yi = −ai + w′kciwk (162)

and predicting variables into a matrix x with rows

xi = (bi + 2ciwk)′ (163)

with

wk+1 = (x′x)−1x′y (164)

20


