Matrix Algebra

Javier R. Movellan
July 23, 2006

1 Trace

- $\operatorname{trace}(a+b)=\operatorname{trace}(a)+\operatorname{trace}(b)$
- $\operatorname{trace}(a)=\operatorname{trace}\left(a^{T}\right)$
- $\operatorname{trace}\left(a^{T} r b^{T}\right)=a^{T} r b$ confirm r does not need rotation
- If a is $m \times n$ and b is $n \times m$ then $\operatorname{trace}(a b)=\operatorname{trace}(b a)=\operatorname{trace}\left(a^{T} b^{T}\right)$

2 Kronecker and Vec

Definition: Kronecker product

$$
a \otimes b=\left(\begin{array}{ccc}
a_{11} b & \cdots & a_{1 n} b \tag{1}\\
\vdots & \ddots & \vdots \\
a_{m 1} b & \cdots & a_{m n} b
\end{array}\right)
$$

Definition: Vec operator

$$
\operatorname{vec}[a]=\left(\begin{array}{c}
a_{11} \tag{2}\\
\vdots \\
a_{m 1} \\
a_{12} \\
\vdots \\
a_{m 2} \\
\vdots \\
a_{1 n} \\
\vdots \\
a_{m n}
\end{array}\right)
$$

2.1 Properties

1.

$$
\begin{equation*}
a \otimes b \otimes c=(a \otimes b) \otimes c=a \otimes(b \otimes c) \tag{3}
\end{equation*}
$$

provided the dimensions of the matrices allows for all the expressions to exist.
2.

$$
\begin{equation*}
(a+b) \otimes(c+d)=a \otimes c+a \otimes d+b \otimes c+b \otimes d \tag{4}
\end{equation*}
$$

3.

$$
\begin{equation*}
(a \otimes b)(c \otimes d)=(a c) \otimes(b d) \tag{5}
\end{equation*}
$$

4.

$$
\begin{equation*}
(a \otimes b)(b \otimes d)=(a c) \otimes(b d) \tag{6}
\end{equation*}
$$

5.

$$
\begin{equation*}
(a \otimes b)^{T}=a^{T} \otimes b^{T} \tag{7}
\end{equation*}
$$

6.

$$
\begin{equation*}
(a \otimes b)^{-1}=a^{-1} \otimes b^{-1} \tag{8}
\end{equation*}
$$

7.

$$
\begin{equation*}
\operatorname{vec}\left[a b^{T}\right]=b \otimes a \tag{9}
\end{equation*}
$$

8.

$$
\begin{equation*}
\operatorname{vec}[a b c]=\left(c^{T} \otimes a\right) \operatorname{vec}[b] \tag{10}
\end{equation*}
$$

9. If $\left\{\lambda_{i}, u_{i}\right\}$ are eigenvalues/eigenvectors of a and $\left\{\delta_{i}, v_{i}\right\}$ are eigenvalues/eigenvectors of b then $\left\{\lambda_{i} \delta_{j}, u_{i} \otimes v_{j}\right\}$ are eigenvalues/eigenvectors ofr $a \otimes b$
10.

$$
\begin{equation*}
\operatorname{det}[a \otimes b]=\operatorname{det}[a]^{m} \operatorname{det}[b]^{n} \tag{11}
\end{equation*}
$$

where a, b are of order $n \times n$ and $m \times m$ respectively.
11.

$$
\begin{equation*}
\operatorname{trace}(a \otimes b)=\operatorname{trace}[a] \operatorname{trace}[b] \tag{12}
\end{equation*}
$$

History

- The first version of this document was written on May 2004.

References

