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1 Conventions

Unless otherwise stated, capital letters are used for random variables, small letters
for specific values taken by random variables, and Greek letters for fixed parameters
and important functions. We leave implicit the properties of the probability space
(Ω,F , P ) in which the random variables are defined. When the context makes it
clear, we identify probability functions by their arguments: e.g., p(x, y) is shorthand
for the joint probability mass or joint probability density that the random variable
X takes the specific value x and the random variable Y takes the value y. We use
subscripted colons to indicate sequences: e.g., X1:t = (X1 · · ·Xt). We use E for
expected value operator and V, C for the variance and covariance operators

C(X,Y ) = E[XY ′]−E[X]E[Y ]′ (1)
V(X) = C(X,X) (2)

• (y1, · · · , yT ) is a fixed sequence of observations.
• yti:tj = (yti , · · · , ytj ).

• µt
s = E(Xt | y1:s).

• σt
s = C(Xt | y1:s), and ηt

s = (σt
s)−1.

• φ(u|µ, σ) represents a Gaussian density with mean vector µ, variance matrix
σ, evaluated at u.

• X ∼ N (µ, σ) means that the random variable X is Gaussian with mean µ
and covariance matrix σ.

• a′ is the transpose of the matrix a.

2 Model

Consider a stochastic process {(Xt, Yt) : t = 1, · · ·T} where Xt ∈ Rnx defined by
the following equations

Xt+1 = aXt + Zt (3)
Yt = bXt +Wt (4)
X1 ∼ N (µ1, σ1) (5)



where a, b are known matrices. The parameters µ1, σ1 are known and represent
the mean and covariance matrix of the initial state distribution. Zt, and Wt are
time independent multivariate Gaussian noise processes with zero mean and co-
variances matrices σz, and σw. Thus the model is specified by the parameters are
a, b, µ1, σ1, σz, σw.

3 Stochastic Filtering

The process X represents the system, dynamics, which may not be directly observ-
able. The process Y represents the observations. Given a sequence of observations
y1:t the goal in stochastic filtering is to compute the posterior distribution of the
internal states p(xt |y1:t). It is easy to see that the X,Y process is jointly Gaussian,
therefore the distribution of any subset of X conditioned on any subset of Y will
also be Gaussian. It follows that the filtering distributions are fully specified by
their means and variances.

3.1 Initialization

The initial distribution of the states are known

E[X1] = µ1 (6)
C[X1] = σ1 (7)

3.2 Forward Prediction (Time Update)

Suppose Xt conditioned on y1:t is Gaussian with mean µt
t and covariance σt

t then,
since

Xt+1 = aXt + Zt (8)

and since Zt is independent of y1:t then

E[Xt+1 | y1:t] = E[aXt + Zt | y1:t] = aµt
t (9)

V[Xt+1 | y1:t] = V[aXt + Zt | y1:t] = aσt
ta
′ + σz (10)

3.3 Forward Estimation Equations (Forward Correction)

We first consider the joint distribution of (Xt+1, Yt+1) given y1:t. We know it is
Gaussian. Its mean is as follows

E[Xt+1 | y1:t] = µt+1
t (11)

E[Yt+1 | y1:t] = E[bXt+1 +Wt+1 | y1:t] = bµt+1
t (12)

and its covariance matrix has the following components

V[Xt+1 | y1:t] = V[aXt + Zt | y1:t] = σt+1
t = aσt

ta
′ + σz (13)

V[Yt+1 | y1:t] = V[bXt+1 +Wt+1 | y1:t] = bσt+1
t b′ + σw (14)

C[Xt+1, Yt+1 | y1:t] = C[Xt+1, bXt+1 +Wt+1 | y1:t] = σt+1
t b′ (15)

C[Yt+1, Xt+1 | y1:t] = C[Xt+1, Yt+1 | y1:t]′; (16)

All we need to do now is get the distribution of Xt+1 conditioned on y1:t and on
Yt+1 = yt+1. The distribution of a subset of Gaussian random variables given



another subset of Gaussian random variables is well known (see Appendix). In our
case

E[Xt+1 | yt+1, y1:t] = E[Xt+1 | y1:t] + kt+1

(
yt+1 −E[Yt+1 | y1:t]

)
(17)

kt+1 = C[Xt+1, Yt+1 | y1:t]
(
V[Yt+1 | y1:t]

)−1

(18)

V[Xt+1 | y1:t+1] = V[Xt+1 | y1:t]− kt+1 V[Yt+1 | y1:t]k′t+1 (19)
Equivalently

µt+1
t+1 = µt+1

t + kt+1(y1:t+1 − bµt+1
t ) (20)

kt+1 = σt+1
t b′(bσt+1

t b′ + σw)−1 (21)

σt+1
t+1 = σt+1

t − kt+1(bσt+1
t b′ + σw)k′t+1 (22)

3.4 Summary of Filtering Equations

Forward Initialization
V(X1) = σ1

E(X1) = µ1

Forward Prediction
σt+1

t = aσt
ta
′ + σz

µt+1
t = aµt

t

Forward Estimation/Correction

kt+1 = σt+1
t b′(bσt+1

t b+ σw)−1

µt+1
t+1 = µt+1

t + kt+1(yt+1 − bµt+1
t )

σt+1
t+1 = σt+1

t − kt+1(bσt+1
t b′ + σw)k′t+1

4 Probability of an observation sequence

The probability of an observation sequence p(y1:t) tells us how well the model fits
the sequence. Note

log p(y1:t) = log p(y1) +
T−1∑
t=1

log p(yt+1 | y1:t) (23)

where each conditional distribution is Gaussian and thus can be characterized by
its mean and variance matrix. For t = 1

E[Y1] = E[bX1 +W1] = bE[X1] (24)

V[Y1] = V[bX1 +W1] = bV[X1]b′ +V[W1] (25)
Moreover, for t > 1

E[Yt+1 | y1:t] = E[bXt+1 +Wt+1 | y1:t] = bE[Xt+1 | y1:t] (26)

V[Yt+1 | y1:t] = V[bXt +Wt | y1:t] = bV[Xt]b′ +V[Wt] (27)



5 Smoothing

The goal in smoothing is to compute p(xt | y1:T ) where T ≥ t. This is a non-causal
process in that we use future observations to estimate the present state.

We know the joint distribution of (Xt, Xt+1) given y1:t is Gaussian with the following
mean and variance

E[Xt | y1:t] = µt
t (28)

E[Xt+1 | y1:t] = aE[Xt | y1:t] = µt+1
t (29)

V[Xt | y1:t] = σt
t (30)

V[Xt+1 | y1:t] = σt+1
t = aσt

ta
′ + σz (31)

C[Xt, Xt+1 | y1:t] = C[Xt, aXt +Wt | y1:t] = σt
ta
′ (32)

C[Xt+1, Xt | y1:t] = C[Xt, Xt+1 | y1:t]′ = aσt
t (33)

From the formula for the conditional distribution of a subset of Gaussian random
variables given another subset of Gaussian random variables (see Appendix) it fol-
lows that

E[Xt | xt+1, y1:t] = E[Xt | y1:t] + gt

(
xt+1 −E[Xt+1 | y1:t]

)
(34)

gt = C[Xt, Xt+1 | y1:t]
(
V[Xt+1 | y1:t]

)−1

(35)

V[Xt | xt+1, y1:t] = V[Xt | y1:t]− gt V[Xt+1 | y1:t] g′t (36)

Note if we know Xt+1 then all the future observations Yt+T provide no further
information about Xt, i.e.

p(xt | xt+1, y1:T ) = p(xt | xt+1, y1:t) (37)

Thus

E[Xt | xt+1, y1:T ] = E[Xt | xt+1, y1:t] (38)
V[Xt | xt+1, y1:T ] = V[Xt | xt+1, y1:t] (39)

The law of iterated expectations tells us tht for any three random vectors X,Y, Z

E[X | z] = E[E[X | Y, z] | z] (40)

In our case

E[Xt | y1:T ] = E[E[Xt |Xt+1, y1:T ] | y1:T ]

= E[Xt | y1:t] + gt

(
E[Xt+1 | y1:T ]−E[Xt+1 | y1:t]

)
(41)

where we used the fact that E[Xt | y1:t], k, E[Xt+1 | y1:t] are constants with respect
to Xt+1. Regarding the covariance matrix. The law of iterated variance tells us
that for any three random vectors X,Y, Z the following is true (see Appendix)

V[X | z] = E[V[X | Y, z] | z] +V[E[X | Y, z] | z] (42)

In our case,

E[V[Xt |Xt+1, y1:T ] | y1:T ] = E[V[Xt | y1:t] | y1:T ]

−E[gtV[Xt+1 | y1:t]g′t | y1:T ]

= V[Xt | y1:t]− gtV[Xt+1 | y1:T ]g′t (43)



where we used the fact that V[Xt |y1:t], gt, V[Xt+1 |y1:t] are constants with respect
to Xt+1. Moreover

V[E[Xt |Xt+1, y1:T ] | y1:T ] = V[E[Xt |Xt+1, y1:t] | y1:T ] = gtV[Xt+1 | y1:T ]g′t (44)

where we used the fact that E[Xt | y1:t], gt, E[Xt+1 | y1:t] are constants with respect
to Xt+1. Thus

V[Xt | y1:T ] = V[Xt | y1:t]− gtV[Xt+1 | y1:T ]g′t + gtV[Xt+1 | y1:T ]g′t

= V[Xt | y1:t]− gt

(
V[Xt+1 | y1:T ]−V[Xt+1 | y1:T ]

)
g′t (45)

Thus

gt = σt
ta
′(σt+1

t )−1 (46)

µt
T = µt

t + gt(µt+1
T − µt+1

t ) (47)

σt
T = σt

t − gt(σt+1
t − σt+1

T )g′t (48)

5.1 Initialization

µT
T and σT

T are given by the terminal condition of the filtering equation.

5.2 Summary of Smoothing Equations

Initialization Compute µT
T , σ

T
T using a Kalman filter.

Backwards Update
gt = σt

ta
′(σt+1

t )−1

µt
T = µt

t + gt(µt+1
T − µt+1

t )
σt

T = σt
t − gt(σt+1

t − σt+1
T )g′t

6 Parameter Training using the EM Algorithm (under
construction)

Let λ̄ represent parameters of current model and λ parameters of a candidate model.
The Q objective function takes the following form

Q(λ̄, λ) =
∫
p(x1:T | y1:T , λ̄) log p(x1:T , y1:T | λ) (49)

where

log p(x1:T , y1:T | λ) = log p(x1 | λ) +
T−1∑
t=1

log p(xt+1 | xt, λ) +
T∑

t=1

log p(yt | xt, λ)

(50)

6.1 Gradient with respect to a

Considering

∂(ax− b)′c(ax− b)
∂a

= (c+ c′)(ax− b)x′ (51)



It follows that
∂ log p(xt+1 | xt, λ)

∂a
= −1

2
∂(xt+1 − axt)′ηz(xt+1 − axt)

∂a
= −ηz(xt+1 − axt)x′t

(52)

Thus

∂ log p(y1:T , x1:T | λ)
∂a

=
ηz

2

T−1∑
t=1

(xt+1 − axt)x′t (53)

6.2 Gradient with respect to b

Considering

∂ log p(yt | xt, λ)
∂b

= −1
2
∂(yt − bxt)′ηw(yt − bxt)

∂b
= −ηw(yt − bxt)x′t (54)

it follows that

∂ log p(y1:T , x1:T | λ)
∂b

=
ηw

2

T∑
t=1

(yt − bxt)x′t (55)

6.3 Gradient with respect to ηz

Considering

∂ log |a|
∂a

= (a′)−1 (56)

∂x′ax

∂a
= xx′ (57)

it follows that

2
∂ log p(xt+1 | xt, λ)

∂ηz
=
∂ log |ηz|
∂ηz

− ∂(xt+1 − axt)′ηz(xt+1 − xt)
∂ηz

(58)

= σz − (xt+1 − axt)(xt+1 − axt)′ (59)

Thus

∂ log p(y1:T , x1:T | λ)
∂ηz

= (T − 1)
σz

2
− 1

2

T−1∑
t=1

(xt+1 − axt)(xt+1 − axt)′ (60)

Note

6.4 Gradient with respect to κz

Sometimes we are interested in estimating the overall level of noise in the state
dynamics. We can model this as

ηz = κzαz (61)

where αz is fixed matrix and κz ∈ R is adaptive. Note

2
∂ log p(xt+1 | xt, λ)

∂κz
=
∂ log |κzαz|

∂κz
− ∂(xt+1 − axt)′αzκz(xt+1 − xt)

∂ηz
(62)

=
nx

κz
− (xt+1 − axt)′αz(xt+1 − axt) (63)



Thus

2
∂ log p(y1:T , x1:T | λ)

∂κz
=

(T − 1)nx

κz
−

T−1∑
t=1

(xt+1 − axt)′αz(xt+1 − axt) (64)

Note

(xt+1 − axt)′αz(xt+1 − axt) = x′t+1αzxt+1 + x′ta
′αzaxt − 2x′t+1αzaxt (65)

= Trace[xt+1x
′
t+1αz] + Trace[xtx

′
ta
′αza]− 2Trace[xtx

′
t+1αza] (66)

6.5 Gradient with respect to ηw

Using the same argument as in the previous section we get

2
∂ log p(yt+1 | xt, λ)

∂ηw
=
∂ log |ηw|
∂ηw

− ∂(yt − bxt)′ηw(yt − bxt)
∂ηw

(67)

= σw − (yt − bxt)ηw(yt − bxt)′ (68)

Thus

∂ log p(y1:T , x1:T | λ)
∂ηw

= T
σw

2
− 1

2

T∑
t=1

(yt − bxt)(yt − bxt)′ (69)

6.6 Gradient with respect to κw

Sometimes we are interested in estimating the overall level of noise in the observa-
tions. We can model this as

ηw = κwαw (70)

where αw is fixed matrix and κw ∈ R is adaptive. Using the same argument as in
the previous section we get

2
∂ log p(yt+1 | xt, λ)

∂κw
=
∂ log |κwαw|

∂κw
− ∂(yt − bxt)′κwαw(yt − bxt)

∂ηw
(71)

=
ny

κw
− (yt − bxt)′αw(yt − bxt) (72)

Thus

2
∂ log p(y1:T , x1:T | λ)

∂κw
=
Tny

κw
−

T∑
t=1

(yt − bxt)′αw(yt − bxt) (73)

Note

(yt − bxt)′αw(yt − bxt) = y′tαwyt + x′tb
′αwbxt − 2y′tαwbxt (74)

= Trace[yty
′
tαw] + Trace[xtx

′
tb
′αwb]− 2Trace[xty

′
tαwb] (75)

6.7 Taking Expectations

Note all the relevant gradients are linear functions of xtx
′
t, xty

′
t, and xt+1x

′
t terms.

For example

E[(Yt − bXt)(Yt − bXt)′ | y1:T ] = E[YtY
′
t | y1:T ]

+ bE[XtX
′
t | y1:T ]b− 2E[YtX

′
t | y1:T ] | y1;T ]b′ (76)



and

E[(Xt+1 − aXt)(Xt+1 − aXt)′ | y1:T ] = E[Xt+1X
′
t+1 | y1:T ]

+ aE[XtX
′
t | y1:T ]a′ − 2E[Xt+1X

′
t | y1:T ] | y1:T ]a′ (77)

Note

E[XtX
′
t | y1:T ] = C[Xt | y1:T ] +E[Xt | y1:T ]E[Xt | y1:T ]′ (78)

= σt
T + µt

T (µt
T )′ (79)

Moreover

E[XtY
′
t | y1:T ] = E[Xt | y1:T ]y′t = µt

T y
′
t (80)

Regarding E[XtX
′
t+1 | y1:T ] using the law of iterated expectations (see Appendix)

we get that

E[XtX
′
t+1 | y1:T ] = E[E[Xt |Xt+1, y1:T ]X ′t+1 | y1:T ] (81)

= E[(µt
t + gt(Xt+1 − µt+1

t ))X ′t+1 | y1:T ]

= µt
tE[Xt+1 | y1:T ]′ + gtE[Xt+1X

′
t+1 − µt+1

t X ′t+1 | y1:T ] (82)

= µt
t (µt+1

T )′ + gt(σt+1
T + µt+1

T (µt+1
T )′ − µt+1

t (µt+1
T )′) (83)

= µt
t (µt+1

T )′ + gt(σt+1
T + (µt+1

T − µt+1
t )(µt+1

T )′) (84)

7 Steady State Filter and Smoother

7.1 Steady State Filter

At a steady state σt+2
t+1 = σt+1

t . Thus we can calculate the steady state uncertainty
σ by solving the following equation

σ = a(σ − σb′(bσb+ σw)−1bσ)a′ + σz (85)

This is known as the Algebraic Riccati Equation. The steady state Kalman gain
can then computed as follows

k = σb′(bσb+ σw)−1 (86)

Example Let a = b = 1. In this case the steady state variance and gain satisfy
the following equations

σ = (1− k)σ + σz (87)

k =
σ

σ + σw
(88)



Thus

σk = σz (89)

k =
σz/k

σz/k + σw
(90)

σz + kσw =
σz

k
(91)

k2σw + kσz − σz = 0 (92)

k =
−σz +

√
σ2

z + 4σzσw

2σw
(93)

k = −r
2

+

√
r2

4
+ r (94)

r
def=

σz

σw
(95)

Following similar steps it can be shown that

σ =
σz +

√
σ2

z + 4σzσw

2
(96)

σ = σw

(r
2

+

√
r2

4
+ r
)

(97)

For example, if σz = σw = 1 then k = 0.618 and σ = 1.618. If σz = 0.0001, σw = 1
then k = 0.01 and σ = 0.01.

Kalman Filters and Exponential Averages Consider 1-D case with

Xt+1 = Xt + Zt (98)
Yt+1 = Xt+1 +Wt+1 (99)

In this case

µt+1
t+1 = µt

t + kt(Yt − µ̂t
t) (100)

which is an exponential smoother. The steady state gain is

k =
σ

σ + σw
≤ 1 (101)

where

σ = (1− σ

σ + σw
)σ + σz (102)

(103)

from which it follows that

σ =
1
2

(
σz +

√
σ2

z + 4σzσw

)
(104)

As it turns out the value of K depends only on the ratio between the system noise
variance σz and the sensor noise variance σw. Table 1 shows the Kalman gain for
different value of the system to sensor variance ratio. It also shows the effective
number of sensory observations N being averaged by the Kalman filter to produce
the state estimate (see Primer on Exponential Smoothing). The table illustrates
that relying on the past is only useful if the sensors are more noisy than the system
dynamic. If the system dynamics are very unpredictable it is better to “live in the
present”.



σz/σw K N
1000 0.999 2003
100 0.9902 202
10 0.9161 22.83
4 0.8284 10.65
2 0.7321 6.46
1 0.618 4.23

0.5 0.5 3
0.25 0.394 2.28
0.1 0.2702 1.74
0.01 0.0951 1.21
0.001 0.0311 1.06

Table 1: First column is the ratio between system uncertainty and sensor uncer-
tainty. Second column is the optimal stationary Kalman gain. In this case the
Kalman filter operates as an exponential smoother. The third column shows the
effective “memory” of the smoother, i.e., how far it averages into the past. A value
of 1 means that it only pays attention to the current sensory value.

7.2 Steady State Smoother

Once the filtering distribution σt
t has reached a steady state σ then the smoothing

gain will also be constant

g = σa′(aσa′ + σz)−1 (105)

At that point the Kalman smoother is just an exponential smoother running back-
wards in time on the output of the forward filter

µt
T = (1− g)µt

t + gµt+1
T (106)

with initial condition given by the terminal output µT
T of the forward filter. We

saw before that in steady state the Kalman filter is fundamentally an exponen-
tial smoother. The Kalman smoother is then an exponential smoother (running
backwards in time) operating on the output of an exponential smoother that runs
forward in time.

Example Let a = b = 1. We saw that in this case the steady state variance and
gain satisfy the following equations

k = −r
2

+

√
r2

4
+ r (107)

σ = σw

(r
2

+

√
r2

4
+ r
)

(108)

where

r
def=

σz

σw
(109)

Thus the steady state smoother gain g is as follows

g =
σ

σ + σz
(110)



and since

σ = (1− k)σ + σz (111)

σ =
σz

k
(112)

then

g =
σz/k

σz/k + σz
=

1
1 + 1/k

(113)

8 Biographical Notes

Rudolph Emil Kalman was born in Budapest, Hungary on May 19, 1930. He
received BS degree from MIT in 1953, MS degree from MIT in 1954, and a ScD in
engineering from Columbia University (1957). During those early years he showed
a highly individual approach to research which continued during his entire career.
He was a staff engineer at IBM from 1957 to 1958. From 1958 to 1964 he was at
the Research Institute for Advanced Studies in Baltimore. In 1960 he published his
classic paper on what we now know as the discrete time Kalman filter E. (1960).
In 1961 he and R. S. Bucy generalized the approach to the continuous time case E.
and S. (1961). He was was at Stanford University from 1964 to 1971. In 1971, he
became a graduate research professor and director of the Center for Mathematical
System Theory at the University of Florida. He retired in the late 90’s with with
emeritus status. The backward recursion used in smoothing was first published in
E. (1963).

Figure 1: Rudolph Emil Kalman

9 Appendix: Unit Test for Kalman Filter and Smoother

Let

Xt+1 = aXt + Zt (114)
Yt+1 = bXt+1 +Wt (115)



with

a =
(

1 −0.5
0.5 1

)
(116)

b = (1, 2) (117)

σz = V(Zt) =
(

1 0
0 1

)
(118)

σw = V(Wt) = 1 (119)

In addition we let the prior distribution be Gaussian with the following parameters

µ1 = E[X1] = [1,−1]′ (120)

σ1 = V[X1] =
(

1 0
0 1

)
(121)

We make the observations for the first 4 time steps be as follows

y1:4 = [−2, 4.5, 1.75, 7.625] (122)

The Kalman filter should produce the following expected values

E[X1 | y1] = [0.833,−1.333]′ (123)

E[X2 | y1:2] = [2.8454, 0.5284]′ (124)

E[X3 | y1:3] = [0.8237, 0.7109]′ (125)

E[X4 | y1:4] = [2.5048, 2.3258]′ (126)

The Kalman smoother should produce the following expected values

E[X1 | y1:4] = [1.3602,−1.3682]′ (127)

E[X2 | y1:4] = [2.4797, 0.4091]′ (128)

E[X3 | y1:4] = [2.1848, 0.2965]′ (129)

E[X4 | y1:4] = [2.5048, 2.3258]′ (130)

10 Appendix: Gaussian densities

An n-dimensional random vector X with mean µ and covariance matrix σ is Gaus-
sian if its density function has the following form

f(x) =
1√

(2π)n|σ|
exp(

1
2

(x− µ)Tσ−1(x− µ)) (131)

10.1 Conditional Gaussian Densities

Let X ∈ Rn, Y ∈ Rm be jointly Gaussian random vectors. It can be shown that
the distribution of X given that Y takes the value y is Gaussian with the following
mean and covariance matrix

E[X | y] = E[X] + k(y −E[Y ]) (132)

V[X | y] = V[X]− kC[X,Y ]′ == V[X]− kV[Y ]k′ (133)

where the gain matrix k is defined as follows

k = C[X,Y ]
(
V[Y ]

)−1

(134)



10.2 Properties of Expected Values and Variances

For random vectors X,Y ∈ Rn let

C(X,Y ) = E[(X −E(X))(Y −E(Y ))′] (135)
V(X) = C(X,X) (136)

Then

E[aX + bY + c] = aE[X] + bE[Y ] + c (137)
C[aX + bY + c, Z] = aC[X,Z] + bC[Y, Z] (138)

V(aX) = aV(X)a′ (139)

V[aX + bY + c] = aV[X]a′ + bV[Y ]b′ + 2aV(X,Y )b′ (140)

10.3 Gaussian Densities and Quadratic Functions

Suppose we are told that a random variable X has a distribution of the following
form

p(x) ∝ ex′ax+bx+c (141)

where a is a symmetric positive definite matrix. Note this is the exponential of
a quadratic function thus X must be a multivariate Gaussian distribution. To
compute its mean and variance we want to put the exponent in the standard form,
i.e., we want to find values of µ and σ such that

x′ax+ b′x+ c = −1
2

(x− µ)′σ−1(x− µ) + k (142)

where k is a constant. We do so by matching first the terms quadratic on x

x′ax = −1
2
x′σ−1x (143)

Thus

σ−1 = (Var[X])−1 = −2a (144)

We then match the terms linear on x

b′x = µ′σ−1x = −2µ′ax (145)

Thus, since this needs to hold for all x,

b′ = −2µ′a (146)

and

µ = E[X] = −1
2
a−1b (147)



10.4 Total Variance

Consider two arbitrary random vectors X,Y . Note

C(X) =
∫
p(y)

∫
p(x | y)(x−E[X|y] +E[X|y]−E[X]) (148)

(x−E[X|y] +E[X|y]−E[X])′dxdy (149)

=
∫
p(y)

∫
p(x | y)(x−E[X|y])(x−E[X|y])′dxdy (150)

+
∫
p(y)

∫
p(x | y)(E[X|y)−E[X])(E[X|y]−E[X])′dxdy (151)

=
∫
p(y)C(X | y)dy

+
∫
p(y)(E[X|y)−E[X])(E[X|y]−E[X])′dy (152)

= E[C[X | Y ]] +C[E[X | Y ]] (153)

10.5 Law of Iterated Expectations

Consider two arbitrary random vectors X,Y . Note

E[X] =
∫
p(y)

∫
p(x | y)xdxdy =

∫
p(y)E[X | y]dy = E[E[X | Y ]] (154)

We also use the following version of the law

E[XY ] =
∫
p(x, y)xydxdy =

∫
p(x | y)y

∫
p(x | y)xdxdy (155)

=
∫
p(y)E[X | y]dy = E[E[X | Y ]] (156)
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