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1 Weak Perspective Projection

Let v(i) be the projection of q(i) on the image plane. Under the weak perspective
model we have that

vi(i) =
f

z
q1(i) (1)

v2(i) =
f

z
q2(i) (2)

v3(i) = f (3)

where f ∈ < is the camera’s focal length ad z ∈ < is the scale or principle
depth. Typically we define s = z/f and treat it as an unknown parameter to
be estimated from the data. Weak prespective is a reasonable approximation
when the depths of the q points are equal and the object is close to the camera’s
optical axis.

If we know p and v recovering r, t and s reduces to an absolute orientation
problem ?. Defining an error function ρ of the following form

ρ(r, t, s) =
1
s

n∑
i=1

‖rp(i) + t− sv(i)‖2 (4)

This is the same objective function as for the absolute orientation problem. ?
presents a classic solution to this problem by modifying the objective function
as follows:

ρ′(r, t, s) =
1
s
ρ(r, t, s) (5)

This objective function has a unique minimum at

ŝ =

√∑n
i=1 ‖p(i)− p̄‖2∑n
i=1 ‖q(i)− q̄‖2

(6)

r̂ = V UT (7)

t̂ = sv̄ − r̂p̄ (8)

where

p̄ =
1
n

n∑
i=1

p(i) (9)

v̄ =
1
n

n∑
i=1

v(i) (10)

and U , V are defined via the svd decomposition of the following matrix M

M =
n∑

i=1

(q(i)− q̄)(p(i)− p̄)T = USV T (11)
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is the svd decomposition of the cov Let r ∈ <3 ⊗ <3 be a rotation matrix and
t ∈ <3 a translation vector. Let y′(i) be the 3D coordinates of the projection of
point i on the image plane. where

Ψ =

 f/z 0 0
0 f/z 0
0 0 f

 (12)

is a projection matrix, with f representing the focal length and z an arbitrary
constant representing the depth of an orthographic projection plane. In practice
Ψ makes y(i) insensitive to the third row of r′ and the last element of t′. Thus
it is convenient to drop the last coordinates on y′, and t′ and the last row of r′.
Thus (??) simplifies as follows

y(i) = ro(i) + t, i = 1, · · · , n (13)

where

y(i) =
(

y′1(i)
y′2(i)

)
(14)

t =
(

f/z 0 0
0 f/z 0

)
Ψt′ (15)

r =
(

f/z 0 0
0 f/z 0

)
Ψr′ (16)

2 ParaPerspective Projection

Note in weak projection when object moves parallel to image plane its projec-
tion on the image plane shifts but does not change in appearance. The para-
perspective transformation is an affine approxiamtion to perspective projection
that produces changes in appearance as we move parallel to the image plane.
In weak projection we first do an orthographic projection of the object draw-
ing rays parallel to the optic axis (perpendicular to image plane and through
the focal point) onto a plane parallel to the image plane and passing through
the center of mass of the centroid. Then we do perspective projection of the
orthographically projected points.

In paraperspective projection we first project the object onto a plane pas-
signg through the center of mass of the object and parallel to the image plane.
In weak projection the projecting rays are parallel to the optical axis. In parap-
erspective projection the rays are parallel to the line that connects the optic axis
and the center of mass of the object. The projected points are then reprojected
onto the image plane using perspective projection. Since all the points on the
plain are at equal depth, then the scaling factor is the same for all the points in
the object.

Here is some useful math for paraperspective projection.
Let p a point in the object, c the center of mass of the object. We let the

coordinate origin be at the focal point and have z = (0, 0, 1)T a unit vector
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perpendicular to the image plane. We want the intersection p′ between the line
that passes through p, and is parallel to the vector c and the plane that is is
perpendicular to z and contains the point c. Thus since p′ − p is parallel to the
vector c it follows that

p′ − p = αc (17)

where α ∈ <. Note the distance from the origin to the plane we will project
onto is c3, the third coordinate of the center of mass. Thus p′ − c3z is on the
plane, and must be perpencidular to z.

(p + αc− c3z) · z = p3 + αc3 − c3 = 0 (18)

and
α =

c3 − p3

c3
(19)

p′ = p− p3 − c3

c3
c (20)

The perspective projection p̂ of p′ is the para-perspective projection of p.

p̂ =
f

p′3
p′ =

f

c3
p′ (21)

3 Rigid Transformations

Let p = {p(i) : i = 1, · · · , n} represent 3D coordinates of n reference points
exrpressed in an object-centered reference frame. Let q = {q(i) : i = 1, · · · , n}
be the corresponding coordinates in a camera-centered reference frame, i.e,

q(i) = rp(i) + t (22)

where

r =

 rT
1

rT
2

rT
3

 (23)

is a rotation matrix. The row vectors rT
1 , rT

2 , rT
3 are the coordinates of the

camera unit axis vectors with respect to the object frame of reference. By
convention the camera reference frame is such that the center of projection of
the camera is at the origin and the third axis is in the positirection of the
camera’s optical axis.

4 The Absolute Orientation Problem

The absolute orientation problem consists of recovering r and t from p and q.
Horn ? presents a classic solution to this problem by minimizing the following
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objective function

ρ(r, t, s) =
1
s

n∑
i=1

‖rp(i) + t− sq(i)‖2 (24)

where s ∈ < is an scale parameter introduced to allow for changes in scale, not
just rigid transformations.

This function is uniquely minimized (see Apendix A) at

ŝ =

√∑n
i=1 ‖p(i)− p̄‖2∑n
i=1 ‖q(i)− q̄‖2

(25)

r̂ = UV T (26)

t̂ = sq̄ − r̂p̄ (27)

where

p̄ =
1
n

n∑
i=1

p(i) (28)

v̄ =
1
n

n∑
i=1

v(i) (29)

and U , V are defined via the svd decomposition of the following matrix M

M =
n∑

i=1

(q(i)− q̄)(p(i)− p̄)T = UWV T (30)

5 Appendix A: The Absolute Orientation Prob-
lem

We want to minimize the function

ρ(r, t, s) =
1
s

n∑
i=1

‖rp(i) + t− sq(i)‖2 (31)

First we take the gradient with respect to t and set it to zero

∇t ρ =
2
s

n∑
i=1

(rp(i) + t− sq(i)) = 0 (32)

thus
t̂ = sq̄ − rp̄ (33)

and

ρ(r, t̂, s) =
1
s

n∑
i=1

‖rp̃(i)− sq̃(i)‖2 =
1
s

n∑
i=1

‖p̃(i)‖2 − 2
n∑

i=1

rp̃(i) · q̃i + s

n∑
i=1

‖q(i)‖2

(34)
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where p̃(i) = p(i)− p̄ and q̃(i) = q(i)− q̄. Taking the gradient with respect to t
we get

∇tρ = − 1
s2

n∑
i=1

‖p̃(i)‖2 +
n∑

i=1

‖q̃(i)‖2 (35)

Thus

t̂ =

√∑n
i=1 ‖p̃(i)‖2∑n
i=1 ‖q̃(i)‖2

(36)

All that is left is findign an orthonormal matrix r̂ that maximizes
n∑

i=1

q̃(i)T rp̃(i) (37)

Note
n∑

i=1

q̃(i)T rp̃(i) = trace(rT m) = (38)

where

m =
n∑

i=1

q̃(i)T p̃(i) (39)

Taking the eigen decomposition of mT m, a symmetric psd matrix

mT m = pλpT (40)

where the columns of p are eigenvectors of mT m and λ1, λ2, λ3 are the diagonal
elements of the eigenvalue matrix λ. Let u = ms−1 where s = p

√
λpT . Note u

is orthonormal, s is psd and m = us. We want to maximize

trace(rT m) = trace(rT us) = trace(rT up
√

λpT ) (41)

= trace(rT u

3∑
i=1

√
λipip

T
i =

3∑
i=1

√
λitrace(rT upip

T
i ) (42)

≤
3∑

i=1

√
λi (43)

where the last inequality occurs because pT
i rT is the transpose of a unit vector

and upi is a unit vector, since both r and u are orthonormal. Now let

m = uwvT (44)

be the svd decomposition of m, i.e., u and v are orthonormal and w is diagonal.
Note mT m = vT w2u and thus wi =

√
λi for i = 1, 2, 3. Moreover if r = uvT

then
rT m = vuT uwvT = vWvT (45)

and
tracerT m = trace(vwvT ) =

∑
wi (46)

showing that r achieves the desired maximum1.
1It can be shown this maximum is unique
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5.1 A more general error function

It is useful to generalize Horn’s approach to the case in which the objective
function is of the form

ρ(r, t, s) =
1
s

n∑
i=1

(rp(i) + t− sq(i))T σ2(i)(rp(i) + t− sq(i)) (47)

where σ2(i) ∈ <3 ⊗ <3 encodes the relative precission of the coordiantes of the
ith point. Let σ(i) be a square root matrix of σ2(i), i.e. σ2(i) = σT (i)σ(i).
Thus

ρ(r, t, s) =
1
s

n∑
i=1

‖σ(i)(rp(i) + t− sq(i))‖2 (48)

Taking the gradient of ρ with respect to t and setting it equal to zero

2
s

n∑
i=1

σ(i)(rp(i) + t− sq(i)) = 0 (49)

Thus
t̂ = sq̄ − rp̄ (50)

where

p̄ =
∑n

i=1 σ(i)p(i)∑n
i=1 σ(i)

(51)

q̄ =
∑n

i=1 σ(i)q(i)∑n
i=1 σ(i)

(52)

Thus,

ρ(r, t̂, s) =
1
s

n∑
i=1

‖σ(i)(rp̃(i)− sq̃(i))‖2 (53)

=
1
s

n∑
i=1

‖σ(i)rp̃(i)‖2 − 2
n∑

i=1

(σ(i)rp̃(i))T σ(i)q(i) (54)

+ s

n∑
i=1

‖σ(i)q̃(i)‖2 (55)

where

p̃(i) = p(i)− p̄ (56)
q̃(i) = q(i)− q̄ (57)
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6 Representing Rotations

6.1 Axis Angle Represntation

The rotation matrix tr hat corresponds to a rotation of θ degrees (with sign
determined by the right hand rule) about the unit vector n is as follows.

r = Icosθ+(1−cos θ)

 n2
1 n1n2 n1n3

n2n1 n2
2 n2n3

n3n1 n3n2 n2
3

+sin θ

 0 −n3 n2

n3 0 −n1

−n2 n1 0


(58)

For example rotation of θ degrees about the X, Y , and Z axis are as follows

rx(α) =

 1 0 0
0 cos α − sinα
0 sinα cos α

 (59)

ry(β) =

 cos β 0 sinβ
0 1 0

− sinβ 0 cos β

 (60)

rz(γ) =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (61)

6.2 Elevation Azymuth Tilt (roll) Representation

We will use the convention for X representing the horizontal axis, Y the vertical
axis and Z representing depth.

The elevation, azymuth, tilt represenation is same as the axis-angle repre-
sentation but with the unit vector n specified by the pan angle α and the tilt
vector β. Thus

nx = a sinα (62)
ny = a sinβ (63)
nz = sin γ (64)

where a is the magnitude of the projection of the unit vector n onto the hori-
zontal plane.

6.3 Euler Angle Representation

The Euler (pronounced “Oiler”) angles representation of a rotation matrix is its
representation in terms of sequential rotations aboutt the X, Y , Z angles

rEuler(α, β, γ) = rx(α)ry(β)rz(γ) (65)
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6.4 Rotations using the Matrix Exponential

Let ω = [ω1 ω2 ω3]T be a unit vector, and let θ be a scalar. Consider the
following real-valued skew-symmetric matrix:

u =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (66)

The matrix exponential euθ is defined by its Taylor explansion (??):

euθ = I + uθ +
(uθ)2

2!
+

(uθ)3

3!
+ · · · (67)

It can be readily shown that u3 = −u. Substituting −u for u3 in the preceding
equation gives

euθ = I + u(θ − θ3

3!
+

θ5

5!
+ · · · ) + u2(

θ2

2!
− θ4

4!
+

θ6

6!
+ · · · ) (68)

Substituting sin θ and cos θ for their Taylor series, we get Rodrigues’ formula:

euθ = I + u sin θ + u2(1− cos θ). (69)

Now consider the rotation of a point p by an angle θ, about an axis through
the origin that is represented by the unit vector ω = [ω1 ω2 ω3]T , as shown
in Figure 1. The component of p parallel to ω, p

‖
ω, will be unchanged by the

rotation. The component of p perpendicular to ω, p⊥ω , will be rotated by the
angle θ about the axis ω. Let p′ be the rotated point location.

O

w

q

p

p′

w× p
w× (w× p)

(w · p)w

Figure 1: Geometry of rotation

p′ = p‖ω + cosθ(p⊥ω ) + sinθ(ω × p) (70)
= (ω · p)ω − cosθ(ω × (ω × p)) + sinθ(ω × p) (71)
= p + sinθ(ω × p) + (1− cosθ)ω × (ω × p) (72)
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Let u be the matrix defined in equation (66). It is easy to verify that u performs
the cross product of ω with any 3D vector z, i.e.,

uz = ω × z (73)

Substituting into (72) yields the rotation matrix, r, as a function of u and θ:

p′ = rp (74)

where
r = I + u sin θ + u2(1− cos θ) (75)

or, by Rodrigues’ formula (69),

r = euθ. (76)

Thus every 3D rotation matrix, r, can be expressed as em, where m is a 3×3
skew-symmetric matrix. Conversely, if m is any 3 × 3 skew-symmetric matrix,
then em is a rotation matrix, since m can be written in the form uθ, where θ is
a scalar and u is a matrix that is related to a unit vector ω by (66).
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