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1 Generative Model

O = aH + Z (1)
where O is an n-dimensional random vector of observations, H and d-dimensional vector
of hidden variables and Z a noise vector. H is a standard Gaussian vector, i.e, H ∼
N(0, Id) and Z is a zero-mean Gaussian vector with diagonal covariance matrix Ψ. The
model parameters are the mixing matrix a and the covariance matrix Ψ.

2 EM Learning

Given o(1), cdots, o(s), a fair sample of observations from O, our goal is to values of λ =
{a,Ψ} that maximize

∑
log p(o(i) | λ). To do so within the EM framework1 we form an

auxiliary function

Q(λ̄, λ) def=
∑

i

∫
p(h | o(i)λ̄) log p(o(i)h | λ)dh (2)

we note that
p(o(i)h | λ) = p(h)p(o(i) | hλ) (3)

and since p(h) does not depend on λ we redifine Q as follows

Q(λ̄, λ) def=
∑

i

∫
p(h | o(i)λ̄) log p(o(i) | hλ)dh (4)

From the definition of the multivariate Gaussian distribution it follows that

Q(λ̄, λ) = −1
2

∑
i=1

E
[
log (2π |Ψ|) + (o(i) − aH)T Ψ−1(o(i) − aH)

∣∣∣ o(i)λ̄
]

(5)

Taking the gradient with respect to a and setting it to zero2 we get

∇aQ(λ̄, λ) = Ψ−1
s∑

i=1

E
[
(o(i) − aH)HT | o(i)λ̄

]
= 0 (6)

Thus
s∑

i=1

o(i)
(
h(i)
)T

= a

s∑
i=1

E
[
HHT | o(i)λ̄

]
(7)

where

h(i) = E
[
H | o(i)λ̄

]
= E(H | λ̄) + ΣHOΣ−1

OO(o(i) − E(O | λ̄)) = aT (aaT + Ψ)−1o(i)

(8)

E
[
HHT | o(i)λ̄

]
= ΣHH − ΣH0Σ−1

00 ΣOH = Id − aT (aaT + Ψ)−1a + h(i)(h(i))T

(9)

Thus,

â =

(
s∑

i=1

o(i)bT (o(i))T

)(
sId − sba +

s∑
i=1

h(i)(h(i))T

)−1

(10)

where
b = aT (aaT + Ψ)−1 (11)

1See the tutorial on EM from the Kolmogorov project
2See the tutorial on Matrix Calculus from the Kolmogorov project



which is independent of Ψ. Note this solves the linear regression problem for least-squares
prediction of o(i) based on h(i). Using the optimal value of a and gradient with respect to
Ψ we get

∇Ψ−1Q(λ̄, â,Ψ) = diag∇Ψ−1Q(λ̄, â,Ψ)

= diag

[
−s

2
Ψ− 1

2

s∑
i=1

E
[
(o(i) − âH)T (o(i) − âH)

∣∣∣ oiλ̄
]]

= 0

(12)

Thus,

Ψ̂ =
1
s

s∑
i−1

diag
[
o(i)(o(i))T − 2o(i)

(
âE
[
HT | o(i)λ̄

])T

+ âE
[
HHT | o(i)λ̄

]
âT

]
(13)

3 Independent Factor Analysis

In ICA one uses superGaussian source distributions, as opposed to Gaussians. A convinient
way to get a super-Gasussian sources is to use a mixture of 2 Gaussians with zero mean
and variances 1, α. We will define a new random vector M = (M1, · · · ,Md)T where Mi

takes values in {0, 1}. The distribution of S given M = m is zero mean Gaussian with
variance

σm = α2 diag(m) + (Im − diag(m)) (14)

Here we address the case in which λ = {a,Ψ}. To use the EM algorithm we now need to
treat H,M as hidden variables. We have

p(ohm | λ) = p(m)p(h |m)p(o | hmλ) (15)

Thus,

Q(λ̄, λ) def=
∑

i

∑
d

∫
p(hm |o(i)λ̄)

(
log p(m) + log p(h |m) + log p(o(i) | hmλ)

)
dhdm

(16)
We can redefine Q by eliminating the terms that do not depend on λ. Thus

Q(λ̄, λ) def=
∑
m

∑
i

p(m | o(i)λ̄)
∫

p(h | o(i)mλ̄) log p(o(i) | hmλ)dh (17)

=
∑
m

p(m | o(i)λ̄)Qm(λ̄, λ) (18)

Taking derivatives with respect to a we get

∇aQ(λ̄, λ) = Ψ−1
∑
m

p̄(m | o(i)λ̄)
s∑

i=1

E
[
(o(i) − aH)HT

∣∣∣ o(i)λ̄
]

= 0 (19)

Thus∑
m

p(m |o(i)λ̄)
s∑

i=1

o(i)
(
E
[
H | o(i)mλ̄

])T

= a
∑
m

p(m |o(i)λ̄)
s∑

i=1

E
[
HHT | o(i)mλ̄

]
(20)



where

E [H | o(i)mλ̄
]

= E(H |mλ̄) + Σm
HO (Σm

OO)−1 (o(i) − E(O |mλ̄)) = σmaT (aσmaT + Ψ)−1o(i)

(21)

E
[
HHT

∣∣ o(i)mλ̄
]

= Σm
HH − Σm

H0 (Σm
00)

−1 Σm
OH + E

[
H | o(i)mλ̄

] (
E
[
H | o(i)mλ̄

])T

= σm − σmaT (aσmaT + Ψ)−1aσm + E
[
H | o(i)mλ̄

] (
E
[
H | o(i)mλ̄

])T

(22)

and

p(m | o(i)λ̄) =
p(m)p(o(i) |mλ)∑
m′ p(m′)p(o(i) |mλ̄)

(23)



4 History

• The first version of this document was written by Javier R. Movellan in January
2004, as part of the Kolmogorov project.


