Tutorial on Factor Analysis

Javier R. Movellan

1 Generative Model

$$
\begin{equation*}
O=a H+Z \tag{1}
\end{equation*}
$$

where O is an n-dimensional random vector of observations, H and d-dimensional vector of hidden variables and Z a noise vector. H is a standard Gaussian vector, i.e, $H \sim$ $N\left(0, I_{d}\right)$ and Z is a zero-mean Gaussian vector with diagonal covariance matrix Ψ. The model parameters are the mixing matrix a and the covariance matrix Ψ.

2 EM Learning

Given $o^{(1)}, c d o t s, o^{(s)}$, a fair sample of observations from O, our goal is to values of $\lambda=$ $\{a, \Psi\}$ that maximize $\sum \log p\left(o^{(i)} \mid \lambda\right)$. To do so within the EM framework ${ }^{1}$ we form an auxiliary function

$$
\begin{equation*}
Q(\bar{\lambda}, \lambda) \stackrel{\text { def }}{=} \sum_{i} \int p\left(h \mid o^{(i)} \bar{\lambda}\right) \log p\left(o^{(i)} h \mid \lambda\right) d h \tag{2}
\end{equation*}
$$

we note that

$$
\begin{equation*}
p\left(o^{(i)} h \mid \lambda\right)=p(h) p\left(o^{(i)} \mid h \lambda\right) \tag{3}
\end{equation*}
$$

and since $p(h)$ does not depend on λ we redifine Q as follows

$$
\begin{equation*}
Q(\bar{\lambda}, \lambda) \stackrel{\text { def }}{=} \sum_{i} \int p\left(h \mid o^{(i)} \bar{\lambda}\right) \log p\left(o^{(i)} \mid h \lambda\right) d h \tag{4}
\end{equation*}
$$

From the definition of the multivariate Gaussian distribution it follows that

$$
\begin{equation*}
Q(\bar{\lambda}, \lambda)=-\frac{1}{2} \sum_{i=1} E\left[\log (2 \pi|\Psi|)+\left(o^{(i)}-a H\right)^{T} \Psi^{-1}\left(o^{(i)}-a H\right) \mid o^{(i)} \bar{\lambda}\right] \tag{5}
\end{equation*}
$$

Taking the gradient with respect to a and setting it to zero ${ }^{2}$ we get

$$
\begin{equation*}
\nabla_{a} Q(\bar{\lambda}, \lambda)=\Psi^{-1} \sum_{i=1}^{s} E\left[\left(o^{(i)}-a H\right) H^{T} \mid o^{(i)} \bar{\lambda}\right]=0 \tag{6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{i=1}^{s} o^{(i)}\left(h^{(i)}\right)^{T}=a \sum_{i=1}^{s} E\left[H H^{T} \mid o^{(i)} \bar{\lambda}\right] \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& h^{(i)}=E\left[H \mid o^{(i)} \bar{\lambda}\right]=E(H \mid \bar{\lambda})+\Sigma_{H O} \Sigma_{O O}^{-1}\left(o^{(i)}-E(O \mid \bar{\lambda})\right)=a^{T}\left(a a^{T}+\Psi\right)^{-1} o^{(i)} \tag{8}\\
& E\left[H H^{T} \mid o^{(i)} \bar{\lambda}\right]=\Sigma_{H H}-\Sigma_{H 0} \Sigma_{00}^{-1} \Sigma_{O H}=I_{d}-a^{T}\left(a a^{T}+\Psi\right)^{-1} a+h^{(i)}\left(h^{(i)}\right)^{T} \tag{9}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\hat{a}=\left(\sum_{i=1}^{s} o^{(i)} b^{T}\left(o^{(i)}\right)^{T}\right)\left(s I_{d}-s b a+\sum_{i=1}^{s} h^{(i)}\left(h^{(i)}\right)^{T}\right)^{-1} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
b=a^{T}\left(a a^{T}+\Psi\right)^{-1} \tag{11}
\end{equation*}
$$

[^0]which is independent of Ψ. Note this solves the linear regression problem for least-squares prediction of $o^{(i)}$ based on $h^{(i)}$. Using the optimal value of a and gradient with respect to Ψ we get
\[

$$
\begin{align*}
\nabla_{\Psi-1} Q(\bar{\lambda}, \hat{a}, \Psi) & =\operatorname{diag} \nabla_{\Psi^{-1}} Q(\bar{\lambda}, \hat{a}, \Psi) \\
& =\operatorname{diag}\left[-\frac{s}{2} \Psi-\frac{1}{2} \sum_{i=1}^{s} E\left[\left(o^{(i)}-\hat{a} H\right)^{T}\left(o^{(i)}-\hat{a} H\right) \mid o^{i} \bar{\lambda}\right]\right]=0 \tag{12}
\end{align*}
$$
\]

Thus,

$$
\begin{equation*}
\hat{\Psi}=\frac{1}{s} \sum_{i-1}^{s} \operatorname{diag}\left[o^{(i)}\left(o^{(i)}\right)^{T}-2 o^{(i)}\left(\hat{a} E\left[H^{T} \mid o^{(i)} \bar{\lambda}\right]\right)^{T}+\hat{a} E\left[H H^{T} \mid o^{(i)} \bar{\lambda}\right] \hat{a}^{T}\right] \tag{13}
\end{equation*}
$$

3 Independent Factor Analysis

In ICA one uses superGaussian source distributions, as opposed to Gaussians. A convinient way to get a super-Gasussian sources is to use a mixture of 2 Gaussians with zero mean and variances $1, \alpha$. We will define a new random vector $M=\left(M_{1}, \cdots, M_{d}\right)^{T}$ where M_{i} takes values in $\{0,1\}$. The distribution of S given $M=m$ is zero mean Gaussian with variance

$$
\begin{equation*}
\sigma_{m}=\alpha^{2} \operatorname{diag}(m)+\left(I_{m}-\operatorname{diag}(m)\right) \tag{14}
\end{equation*}
$$

Here we address the case in which $\lambda=\{a, \Psi\}$. To use the EM algorithm we now need to treat H, M as hidden variables. We have

$$
\begin{equation*}
p(o h m \mid \lambda)=p(m) p(h \mid m) p(o \mid h m \lambda) \tag{15}
\end{equation*}
$$

Thus,
$Q(\bar{\lambda}, \lambda) \stackrel{\text { def }}{=} \sum_{i} \sum_{d} \int p\left(h m \mid o^{(i)} \bar{\lambda}\right)\left(\log p(m)+\log p(h \mid m)+\log p\left(o^{(i)} \mid h m \lambda\right)\right) d h d m$
We can redefine Q by eliminating the terms that do not depend on λ. Thus

$$
\begin{align*}
Q(\bar{\lambda}, \lambda) & \stackrel{\text { def }}{=} \sum_{m} \sum_{i} p\left(m \mid o^{(i)} \bar{\lambda}\right) \int p\left(h \mid o^{(i)} m \bar{\lambda}\right) \log p\left(o^{(i)} \mid h m \lambda\right) d h \tag{17}\\
& =\sum_{m} p\left(m \mid o^{(i)} \bar{\lambda}\right) Q_{m}(\bar{\lambda}, \lambda) \tag{18}
\end{align*}
$$

Taking derivatives with respect to a we get

$$
\begin{equation*}
\nabla_{a} Q(\bar{\lambda}, \lambda)=\Psi^{-1} \sum_{m} \bar{p}\left(m \mid o^{(i)} \bar{\lambda}\right) \sum_{i=1}^{s} E\left[\left(o^{(i)}-a H\right) H^{T} \mid o^{(i)} \bar{\lambda}\right]=0 \tag{19}
\end{equation*}
$$

Thus
$\sum_{m} p\left(m \mid o^{(i)} \bar{\lambda}\right) \sum_{i=1}^{s} o^{(i)}\left(E\left[H \mid o^{(i)} m \bar{\lambda}\right]\right)^{T}=a \sum_{m} p\left(m \mid o^{(i)} \bar{\lambda}\right) \sum_{i=1}^{s} E\left[H H^{T} \mid o^{(i)} m \bar{\lambda}\right]$
where

$$
\begin{align*}
& E\left[H \mid o^{(i)} m \bar{\lambda}\right]=E(H \mid m \bar{\lambda})+\Sigma_{H O}^{m}\left(\Sigma_{O O}^{m}\right)^{-1}\left(o^{(i)}-E(O \mid m \bar{\lambda})\right)=\sigma_{m} a^{T}\left(a \sigma_{m} a^{T}+\Psi\right)^{-1} o^{(i)} \tag{21}\\
& E\left[H H^{T} \mid o^{(i)} m \bar{\lambda}\right]=\Sigma_{H H}^{m}-\Sigma_{H 0}^{m}\left(\Sigma_{O 0}^{m}\right)^{-1} \Sigma_{O H}^{m}+E\left[H \mid o^{(i)} m \bar{\lambda}\right]\left(E\left[H \mid o^{(i)} m \bar{\lambda}\right]\right)^{T} \\
& =\sigma_{m}-\sigma_{m} a^{T}\left(a \sigma_{m} a^{T}+\Psi\right)^{-1} a \sigma_{m}+E\left[H \mid o^{(i)} m \bar{\lambda}\right]\left(E\left[H \mid o^{(i)} m \bar{\lambda}\right]\right)^{T} \tag{22}
\end{align*}
$$

and

$$
\begin{equation*}
p\left(m \mid o^{(i)} \bar{\lambda}\right)=\frac{p(m) p\left(o^{(i)} \mid m \lambda\right)}{\sum_{m^{\prime}} p\left(m^{\prime}\right) p\left(o^{(i)} \mid m \bar{\lambda}\right)} \tag{23}
\end{equation*}
$$

4 History

- The first version of this document was written by Javier R. Movellan in January 2004, as part of the Kolmogorov project.

[^0]: ${ }^{1}$ See the tutorial on EM from the Kolmogorov project
 ${ }^{2}$ See the tutorial on Matrix Calculus from the Kolmogorov project

