A Quickie on Exponential Smoothing

Javier R. Movellan

Let $X=X_{1}, \cdots$, be independent identically distributed random variables with variance σ^{2}. We define the exponential running average of X with parameter $\alpha \in$ $[0,1]$ as follows

$$
\begin{equation*}
\hat{X}_{t}=\frac{1}{w_{t}} \alpha\left(X_{t}+(1-\alpha) X_{t-1}+\cdots+(1-\alpha)^{t-1} X_{1}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{t}=\alpha\left(1+(1-\alpha)+\cdots+(1-\alpha)^{t-1}\right) \tag{2}
\end{equation*}
$$

1 Properties

Relation with running average

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \hat{X}_{t}=\frac{\sum_{i=1}^{t} X_{t}}{t} \tag{3}
\end{equation*}
$$

Recursive Update Equations

$$
\begin{equation*}
\hat{X}_{t}=\frac{1}{w_{t}} \bar{X}_{t} \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{X}_{0}=0 \tag{5}\\
& w_{0}=0 \tag{6}\\
& \bar{X}_{t}=\alpha X_{t}+(1-\alpha) \bar{X}_{t-1}, \text { for } t>0 \tag{7}\\
& w_{t}=\alpha+(1-\alpha) w_{t-1}, \text { for } t>0 \tag{8}
\end{align*}
$$

Equivalent Variance Note

$$
\begin{equation*}
\operatorname{Var}\left(\hat{X}_{t}\right)=\frac{\sigma^{2} \alpha^{2}}{w_{t}^{2}}\left(\sum_{s=0}^{t-1}(1-\alpha)^{2 s}\right) \tag{9}
\end{equation*}
$$

Using the following property about the sum of geometric series

$$
\begin{equation*}
a^{0}+a^{1}+a^{2}+\cdots+a^{n-1}=\frac{1-a^{n}}{1-a} \tag{10}
\end{equation*}
$$

we get that

$$
\begin{align*}
& w_{t}=1-(1-\alpha)^{t} \tag{11}\\
& \sum_{s=0}^{t-1}(1-\alpha)^{2 s}=\frac{1-(1-\alpha)^{2 t}}{1-(1-\alpha)^{2}} \tag{12}
\end{align*}
$$

We can now compare this to the variance of a uniform averager of size n

$$
\begin{equation*}
\operatorname{Var}\left(\frac{1}{n_{t}} \sum_{s=1}^{n_{t}} X_{s}\right)=\frac{\sigma^{2}}{n_{t}} \tag{13}
\end{equation*}
$$

we want it to have to find the valu of n_{t} that would give the same variance as an exponential smoother with t observations. Thus

$$
\begin{equation*}
\frac{1}{n_{t}}=\frac{\alpha^{2}}{w_{t}^{2}}\left(\sum_{s=0}^{t-1}(1-\alpha)^{2 s}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{t}=\frac{\left(1-(1-\alpha)^{t}\right)^{2}\left(1-(1-\alpha)^{2}\right)}{\alpha^{2}\left(1-(1-\alpha)^{2 t}\right)} \tag{15}
\end{equation*}
$$

Figure 1 shows the equivalent n_{t} as a function of time t for different values of α.

Asymptotics

- $\lim _{t \rightarrow \infty} w_{t}=1$.

This property tells us that for large t we don't really need to worry about the denominator w_{t} since its value will converge to 1 . Thus, for large t we have $\alpha X_{t}+(1-\alpha) \hat{X}_{t-1}$

- $\lim _{t \rightarrow \infty} n_{t}=\frac{2-\alpha}{\alpha}$ This is useful to calculate the value of α that corresponds to a given uniform smoother

$$
\begin{equation*}
\alpha=\frac{2}{n+1} \tag{16}
\end{equation*}
$$

- $\lim _{t \rightarrow \infty} \alpha\left(\sum_{s=0}^{t-1}(t-s)(1-\alpha)^{s}\right)=t-\frac{1-\alpha}{\alpha}$

This property tells us that the expected lag for an exponential smoother is $(1-\alpha) / \alpha$

Appendix: Effective Number of Observation for Weighted Averages

Here we present some heuristics for computing the number of observations effectively used in a weighted average. Let

$$
\begin{equation*}
\bar{X}_{t}=\frac{\sum_{s=1}^{t} X_{s} w_{s}}{\sum_{s=1}^{t} w_{s}} \tag{17}
\end{equation*}
$$

where $w_{s} \geq 0$ are fixed weights. Assuming independent identically distributed observations we have that

$$
\begin{equation*}
\operatorname{Var}\left(\bar{X}_{t}\right)=\sigma^{2} \frac{\sum_{s=0}^{t} w_{s}^{2}}{\left(\sum_{s=0}^{t} w_{s}\right)^{2}} \tag{18}
\end{equation*}
$$

The variance of an average based on n observations with equal weights is σ^{2} / n thus, the effective number of observations in the weighted statistic is

$$
\begin{equation*}
n=\frac{\left(\sum_{s=0}^{t} w_{s}\right)^{2}}{\sum_{s=0}^{t} w_{s}^{2}} \tag{19}
\end{equation*}
$$

For example, if all the weights are zero except for n weights that are 1 , then the effective number of observations is n. If all the weights are zero, except for 10 weights that are $10,9, \cdots 1$, then the effective number of observations is 7.857 .
This heuristic does not capture the fact that the value of a weight, not its ratio, at times has meaning. For example, for a single observation with weight larger than zero the effective n is 1 , regardless of how large that weight is.

2 History

- The first version of this document was written by Javier R. Movellan in August 2004, as part of the Kolmogorov project.

Figure 1: Equivalent n_{t} for 3 different values of α.

