A Quickie on Exponential Smoothing

Javier R. Movellan

Let $X = X_1, \cdots$, be independent identically distributed random variables with variance σ^2 . We define the exponential running average of X with parameter $\alpha \in [0, 1]$ as follows

$$\hat{X}_t = \frac{1}{w_t} \alpha (X_t + (1 - \alpha) X_{t-1} + \dots + (1 - \alpha)^{t-1} X_1)$$
(1)

where

$$w_t = \alpha (1 + (1 - \alpha) + \dots + (1 - \alpha)^{t-1})$$
(2)

1 Properties

Relation with running average

$$\lim_{\alpha \to 0} \hat{X}_t = \frac{\sum_{i=1}^t X_t}{t} \tag{3}$$

Recursive Update Equations

$$\hat{X}_t = \frac{1}{w_t} \bar{X}_t \tag{4}$$

where

$$X_0 = 0 \tag{5}$$

$$w_0 = 0 \tag{6}$$

$$X_t = \alpha X_t + (1 - \alpha) X_{t-1}, \text{ for } t > 0$$
 (7)

$$w_t = \alpha + (1 - \alpha)w_{t-1}, \text{ for } t > 0$$
 (8)

Equivalent Variance Note

$$Var(\hat{X}_{t}) = \frac{\sigma^{2} \alpha^{2}}{w_{t}^{2}} \left(\sum_{s=0}^{t-1} (1-\alpha)^{2s} \right)$$
(9)

Using the following property about the sum of geometric series

$$a^{0} + a^{1} + a^{2} + \dots + a^{n-1} = \frac{1 - a^{n}}{1 - a}$$
 (10)

we get that

$$w_t = 1 - (1 - \alpha)^t \tag{11}$$

$$\sum_{s=0}^{t-1} (1-\alpha)^{2s} = \frac{1-(1-\alpha)^{2t}}{1-(1-\alpha)^2}$$
(12)

We can now compare this to the variance of a uniform averager of size n

$$Var(\frac{1}{n_t}\sum_{s=1}^{n_t} X_s) = \frac{\sigma^2}{n_t}$$
(13)

we want it to have to find the valu of n_t that would give the same variance as an exponential smoother with t observations. Thus

$$\frac{1}{n_t} = \frac{\alpha^2}{w_t^2} \left(\sum_{s=0}^{t-1} (1-\alpha)^{2s} \right)$$
(14)

and

$$n_t = \frac{(1 - (1 - \alpha)^t)^2 (1 - (1 - \alpha)^2)}{\alpha^2 (1 - (1 - \alpha)^{2t})}$$
(15)

Figure 1 shows the equivalent n_t as a function of time t for different values of α .

Asymptotics

• $\lim_{t\to\infty} w_t = 1.$

This property tells us that for large t we don't really need to worry about the denominator w_t since its value will converge to 1. Thus, for large t we have $\alpha X_t + (1 - \alpha) \hat{X}_{t-1}$

• $\lim_{t\to\infty} n_t = \frac{2-\alpha}{\alpha}$ This is useful to calculate the value of α that corresponds to a given uniform smoother

$$\alpha = \frac{2}{n+1} \tag{16}$$

• $\lim_{t\to\infty} \alpha \left(\sum_{s=0}^{t-1} (t-s)(1-\alpha)^s \right) = t - \frac{1-\alpha}{\alpha}$ This property tells us that the expected lag for an exponential smoother is $(1-\alpha)/\alpha$

Appendix: Effective Number of Observation for Weighted Averages

Here we present some heuristics for computing the number of observations effectively used in a weighted average. Let

$$\bar{X}_{t} = \frac{\sum_{s=1}^{t} X_{s} w_{s}}{\sum_{s=1}^{t} w_{s}}$$
(17)

where $w_s \geq 0$ are fixed weights. Assuming independent identically distributed observations we have that

$$Var(\bar{X}_{t}) = \sigma^{2} \frac{\sum_{s=0}^{t} w_{s}^{2}}{\left(\sum_{s=0}^{t} w_{s}\right)^{2}}$$
(18)

The variance of an average based on n observations with equal weights is σ^2/n thus, the effective number of observations in the weighted statistic is

$$n = \frac{\left(\sum_{s=0}^{t} w_s\right)^2}{\sum_{s=0}^{t} w_s^2}$$
(19)

For example, if all the weights are zero except for n weights that are 1, then the effective number of observations is n. If all the weights are zero, except for 10 weights that are $10, 9, \dots 1$, then the effective number of observations is 7.857.

This heuristic does not capture the fact that the value of a weight, not its ratio, at times has meaning. For example, for a single observation with weight larger than zero the effective n is 1, regardless of how large that weight is.

2 History

• The first version of this document was written by Javier R. Movellan in August 2004, as part of the Kolmogorov project.

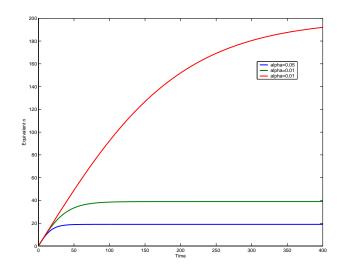


Figure 1: Equivalent n_t for 3 different values of α .