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I still do not have a clear understanding of what the state variables in a circuit are
and why. For example, should it be the voltage and current of every point in the
cirucit. Should it also include the voltage and current derivatives? Should it also
include the voltage and current integrals, double derivatives ... Once we have this
then we can decide what the state variables are for diodes, and for transistors .... It
seems a clear understanding of this is lacking in just about every book I’ve bumped
into.

It would also be useful to think of all the space that surrounds the “circuit” as being
part of the circuit, only some parts are connected via zero resistance and some via
zero admittance.

I dont understand teh whole issue with connecting circuits: Impedance In, Impedance
Out, Impedance matching ...

Suppose a capcitor gets some current in. By doing so it acumulates charge so it
seems like the current out should not be equal to the current in. Why is this point
of view wrong?

Solving an electronic network means determining the currents or the voltages of
each point of it.

1 Linear Components

• Resistor:
V (t) = RI(t) (1)

• Capacitor:

V (t) =
1
C

Q(t) (2)

or equivalently
dVc(t)

dt
=

1
C

I(t) (3)

• Inductor:

V (t) = L
dI(t)
dt

(4)

• Linear Amplifiers:

• Operational Amplifiers:

where V (t) represents the voltage drop accross the component, I(t) the current
accross teh component, and Q(t) the electric charge.

It is best to think as every location in the circuit to have a mixture of resistance,
capacitance and inductance. In practice we separatet these properties into compo-
nents for which one of the three characteristics is dominant.

1.1 Linear System Analysis

Problem with this analysis is that it does not seem to take into consideration the
initial conditions. I guess the issue is that the input the system is proved with is a
sinusoid in the real line. There really is not initial condition in them. This analysis
does not seem enough to handle transient effects.



1.2 The Bilateral Laplace Transform

Let f : <+ → C. The Bilateral Laplace transform of f is a function f̂ : C → C
defined as follows

f̂(s) = L[f(t)](s) def=
∫ ∞

−∞
f(t)e−stdt (5)

Example:
Let

u(t) =
{

0, for t < 0
1, else

(6)

then

û(s) =
∫ ∞

0

u(t)e−stdt =
∫ ∞

0

e−stdt =
[
−1
s

e−st

]∞
0

(7)

=
1
s
, for Re(s) > 0 (8)

The subset of complex numbers s for which the Laplace transform integral exists is
called the “Region of Convergence” or ROC. In the previous example, the region of
convergence is the set of complex numbers with positive real part.

1.2.1 The Unilateral Laplace Transform

The unilateral tranform of f(t) is the bilateral transform of f(t)u(t). The unilateral
transform is useful for analysis of linear systems in which the initial conditions are
important.

The bilateral transform is useful for analysis of a system in which the effect of
the initial conditions is negligeble, i.e., we can think of the input signal as having
operated forever in the past. The main difference between the two transforms is in
the differentiation property: An initial conditions terms appears in the unilateral
transform but not in the bilateral transform.

1.2.2 Properties of the Unilateral Laplace Transform

1. Linearity:
L[a1f1(t) + a2f2(t)](s) = a1f̂1(s) + a2f̂2(s) (9)

2. Differentiation: Let

h(t) =
df(t)
dt

(10)

Then
ĥ(s) = sf̂(s)− f(0) (11)

Proof: Using integration by parts we have∫ ∞

0

f ′(t)e−stdt =
[
f(t)est

]∞
0

+ s

∫ ∞

0

f(t)e−stdt (12)

Note the dependency of the unilateral Laplace transform on initial condi-
tions.
In the bilateral transform for signals with no beginning and end this de-
pendency dissapears. Show why



3. Multiple Differentiation Using the differentiation rule twice we get that
if

h(t) =
d2f(t)

dt2
(13)

then
ĥ(s) = sf̂ ′(s)− f ′(0) = s2f̂(s)− sf ′(0)− f(0) (14)

In general if

h(t) =
dnf(t)

dtn
(15)

then

ĥ(s) = snf̂(s)−
n∑

k=0

sk dkf(0)
dtk

(16)

4. Integration: Let

h(t) =
∫ t

0

f(u)du (17)

Then

ĥ(s) =
1
s
f(s) (18)

Proof:

f(t) =
dF (t)

dt
(19)

Thus
f(t) = sF (s)− F (0) = sF (s) (20)

5. Complex Translation: Let

ĥ(s) = f̂(s + a) (21)

Then
h(t) = e−atf(t) (22)

Proof:

ĥ(s) =
∫ ∞

0

f(t)e−(a+s)tdt = L[e−atf(t)](s) (23)

with the region of convergence for h switched accordingly.

6. Complex Differentiation: Let

ĥ(s) =
df̂(s)

ds
(24)

Then
h(t) = −tf(t) (25)

Proof:
df̂(s)

ds
=
∫ ∞

0

f(t)
d

ds
e−stdt = −

∫ −infty

0

tf(t)e−stdt (26)

with the region of convergence for h switched accordingly.



f(t) f̂(s) ROC
δ(t) 1 C
u(t) 1

s <(s) > 0
e−atu(t) 1

s+a <(s + a) > 0
u(t)cos(ωt) s

s2+ω <(s) > 0
u(t)sin(ωt) ω

s2+ω <(s) > 0

Table 1: Some Useful Laplace Transforms

7. Time Scaling: Let a > 00 and
h(t) = f(at) (27)

Then
ĥ(s) =

1
a
f̂(s/a) (28)

Proof: Using change of variables u = at we have

ĥ(s) =
∫ ∞

0

h(t)e−stdt =
∫ ∞

0

f(at)e−stdt =
1
a

∫ ∞

0

f(a)e−
s
a udu (29)

with the region of convergence for h scaled accordingly.

We have been ignoring the effect of the tranform on ROC. These effects should be
considered part of the tranformation also

1.2.3 Inverse Laplace Transform

f(t) =
∫ σ+j∞

0

f̂(s)estds (30)

for any value of σ in the region of convergence.

1.2.4 Partial Fraction Expansion

It is the basic approach used to find inverse Laplace transforms of trasfer functions.
A polynomical with real coefficients can be factored into a product of quadratics of
the form ax2 + bx + c, with x ∈ C. Thus it can be factored into products of the
form (x − xi)(x − xj). The terms xi, xj are the roots of the polynomialos. These
roots come in pairs. If b2− 4ac > 0 then xi, xj are real and distinct. If b2− 4ac < 0
then xi, xj are complex conjugates. If b2 − 4ac = 0 then xi = xj .

Let

F (x) =
N(x)
D(x)

(31)

where N(x), D(x) are complex polynomials with real coefficients. Let x1, · · · , xn

be the roots of D(x). If all the roots are distinct (and therefore also real), then

F (x) =
n∑

i=1

ki

x− xi
(32)

To find ki note

F (x)(x− xi)|x=xi =
N(x)

πj 6=i(xi − xj)
= ki (33)

Other methods exist to find the ki factors when the roots are not distinct.



1.3 Application to Solving Differential Equations

Consider a system with input X(t) and output Y (t) characterized by the following
differential equation:

X(t) =
m∑

k=0

bk
dkY (t)

dtk
(34)

Taking the Laplace transform transform on both sides we have

X̂(s) = Ŷ (s)
m∑

k=0

bk sk

(
1− dkY (0)

dY

)
(35)

Let the transfer function be defined as follows

H(s) def=
Ŷ (s)
X̂(s)

=
X̂(s)∑m

k=0 bk sk
(
1− dkY (0)

dY

) (36)

and the impedance function be defined as follows

Z(s) def=
Ŷ (s)
X̂(s)

=

∑m
k=0 bk sk

(
1− dkY (0)

dY

)
X̂(s)

(37)

2 Application to Analysis of Linear Circuits

2.1 Impedance Reactance, Admittance

Define the “impedance” Z of a circuit system as the transfer function when the
initial conditions of the element are zero, the input is the potential difference applied
to that element and the output is the current through the system

Z(s) =
V (s)
I(s)

(38)

The real part of Z is called the “resistance”, the imaginary part is called the “re-
actance”.

The “admittance” Y of a circuit system is the the inverse of the impedance, i.e.

Y (s) =
I(s)
V (s)

(39)

2.2 Impedance of Resistors, Capacitors and Inductors

Applying the Laplace transform to the resistor, capacitor and inductor equations
we have

• Resistors:

V (t) = RI(t) (40)

V̂ (s) = RÎ(s) (41)
Thus

ZR =
V̂ (s)
Î(s)

(42)

YR =
Î(s)
V̂ (s)

(43)



• Capacitors:

dV (t)
dt

=
1
C

I(t) (44)

sV̂ (s)− V (0) =
1
C

Î(s) (45)

Thus

ZC =
V̂ (s)
Î(s)

=
1

sC
(46)

YR =
Î(s)
V̂ (s)

= sC (47)

• Inductors:

V (t) = L
dI(t)
dt

(48)

V (s) = LsÎ(s)− I(0) (49)

Thus

ZL =
V̂ (s)
Î(s)

= sL (50)

YR =
Î(s)
V̂ (s)

=
1
sL

(51)

• Linear Amplifiers:

• Operational Amplifiers:

2.3 Connecting Circuits in Series and in Parallel

Using the conservation of laws we get that when two systems are connected in serial
(Figure 1 Left)

V = V1 + V2 = Z1I + Z2I
def= IZ (52)

Thus impedances add

Z = Z1 + Z2
1
Y

=
1

1
Y1

+ 1
Y2

(53)

When the systems are connected in parallel (Figure 1 Right) we have

I = I1 + I2 = Y1V + Y2V
def= V Y (54)

Thus admittances add

Y = Y1 + Y2
1
Z

=
1

1
Z1

+ 1
Z2

(55)



Vin Vout
Z1 Z2

Vin

Vout

Z1 Z2

Figure 1: Serial and Parallel Connection of Circuits

2.3.1 RLC omponents in Series

Z(s) = ZC(s) + ZL(s) + ZR(s) (56)
In many applications the voltage sources produce sinusoids. Thus we are interested
on the impedance to signals of the form s = jω, where

ω
def= 2πf (57)

is the angular frequency, measured in radians per second, and f is the frequency in
Hertzs. In this case it is convenient to express Z as a function of ω

ZR(ω) = R (58)

ZC(ω) = − j

Cω
(59)

ZL(ω)jLω (60)
where we used the fact that

1
j

=
j

j2
= −j (61)

Note how capacitors and inductors can cancel each other’s impedances, i.e.,

ZC + ZL = j(Lω − 1
Cω

) (62)

Thus
‖Zc + ZL‖ = Lω2 − 1

C2ω2
(63)

This is the reason why there are big cylinders (capacitors) outside industrial sites.
The capacitors compensate for the inductance of the electrical machinery in the
site.

2.3.2 Voltage Dividers

Consider the circuit in Figure 2. Note

I(t) =
Vin(t)

Z1 + Z2
(64)

Vout(t) = Z2I(t) =
Z2

Z1 + Z2
Vin (65)

Voltage dividers are used to reduce an inpupt voltage to a smaller desired output
voltage.



Vin

Vout

Z1

Z2

Figure 2: Voltage Divider

2.3.3 “Poor Boy” Current Sources

Ideal current sources provide constant current to a load independent of the load’s
impedance. The simplest way to approximate a voltage source is to connect a high
impedance element Z in series with a high-voltage source V .

The current out of this circuit would be

I =
V

Z + ZLoad
(66)

If V and Z are large in comparison with ZLoad then I is approximately independent
of ZLoad.

Current sources can be approximated by having a large Vin and R.

2.3.4 Low Pass Filtering

Consider the circuit in Figure 3:Left. From (65) we have

Vout =
−j 1

Cω

R− j 1
Cω

Vin =
1

1 + jRCω
Vin (67)

Thus
‖Vout‖ =

1√
1 + R2C2ω2

Vin (68)

2.4 Bode Plots

Bode plots describe the voltage gain in decibels (dB) as a function of frequency.
The gain is decibels is defined as follows

dB = 10 log10

V 2
out

V 2
in

= 20 log
Vout

Vin
(69)

The half-power frequency, or cutoff frequency, or 3 dB breakpoint is the
frequency at which the energy out of the filter is half the energy in, i.e.

dB = 10 log10 0.5 = −3.01dB (70)



In the RC circiut above, we have that Since energy is proportional to V 2 we have

‖Vout

Vin
‖2 =

1
1 + R2C2ω2

=
1
2

(71)

ω3dB =
1

RC
(72)

f3dB =
1

2πRC
(73)

Low-pass filters are sometimes approximated by two lines, one with the low fre-
quency assymptote and one with the high frequency assymptote. For ω ≤≤ 1/RC
the gain is approximated as 0 dB. For ω ≥≥ 1/RC the gain is approximately
−20 log10 ωRC. The two lines cross at ω = 1/RC, which is for this reason also
called the corner frequency or break frequency.

Also note for a gain of -20 dB the power has decreased by a factor of 100.

‖Vout

Vin
‖2 =

1
1 + R2C2ω2

=
1

100
(74)

ω20dB =
√

99
1

RC
≈ 10

1
RC

(75)

f20dB = 10
1

2πRC
(76)

Figure 4:Left shows the frequency response curve of a filter wioth R = 1000Ω and
C = 0.1µF . The 3dB breakpoint is 159.15 Hz.

Vin Vin VinVout Vout Vout Vin Vout

Figure 3: From Left to Right: Low Pass Filter. High Pass Filter. Band Pass Filter.
Notch Filter
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Figure 4: From Left to Right: Frequency Response of a Low Pass Filter. High Pass
Filter. Band Pass Filer. Notch Filter. The parameters of the Low Pass and High
Pass Filters are: R = 1KΩ,C = 0.1µF . The parameters fo the bBand Pass and
Notch Filters are: R = 1KΩ, C = 5mF , L = 1.41 Henrys

Low Pass Filtering and Integration Note

I(t) = C
dV (t)

dt
=

Vin(t)− Vout(t)
R

(77)



If we keep Vin >> Vout then

C
dV (t)

dt
≈ Vin(t)

R
(78)

V (t) ≈ 1
RC

∫ t

0

Vin(s)ds (79)

Note if I(t) were constant, i.e., if we had a current source, then the integral would
be exact.

2.4.1 High Pass Filtering

If we interchange the resistor and capacitor in a low pass filter, we get a high-pass
filter. Consider the circuit in Figure 3:Center. From (65) we have

Vout =
R

R− j 1
Cω

Vin =
1

1− j 1
RCω

Vin (80)

Thus
‖Vout‖ =

1√
1 + 1

R2C2ω2

Vin (81)

The 3 dB breakpoint of the filter is as in the low pass filter

‖Vout

Vin
‖2 = 0.5 (82)

ω3dB =
1

RC
(83)

f3dB =
1

2πRC
(84)

Figure 4:Right shows the frequency response curve of a filter wioth R = 1000Ω and
C = 0.1µF . The 3dB breakpoint is 159.15 Hz.

High Pass Filtering and Differentiation Note

I(t) = C
d

dt
(Vin(t)− Vout(t)) =

Vout(t)
R

(85)

If we have R,C snakk so that

dVin(t)
dt

>>
dVout(t)

dt
(86)

then

Vout ≈ R
dVin(t)

dt
(87)

2.4.2 Band Pass Filtering

Consider the circuit in Figure 3:Right. From (65) we have

Vout =

1
1

ZL
+ 1

ZC

R + 1
1

ZL
+ 1

ZC

Vin =
1

1 + R
(

1
ZL

+ 1
ZC

)Vin (88)

=
1

1 + jR
(
ωC − 1

ωL

) (89)



Thus
‖Vout‖ =

1√
1 + R2

(
ωC − 1

ωL

)2 ‖Vin‖ (90)

Thus the resonant (peak) frequency is at

ωC =
1

ωL
(91)

ω =
1

LC
(92)

f =
1

2πLC
(93)

Tog get the 3 dB breakpoints of the filter

‖Vout

Vin
‖2 = 0.5 (94)

R2

(
Cω − 1

Lω

)2

= 1 (95)

Cω − 1
Lω

= ± 1
R

(96)

Cω2 − 1
L
± ω

R
= 0 (97)

ω =
± 1

R ±
√

1
R2 + 4C

L

2C
(98)

Note √
1

R2
+ 4

C

L
>

1
R

(99)

Thus our solution of interest is

ω =

√
1

R2 + 4C
L ±

1
R

2C
(100)

and the 3dB bandwidth is

∆ω =
1

RC
(101)

∆f =
1

2πRC
(102)

(103)

Figure 4:Right shows the frequency response curve of a filter wioth R = 1000Ω and
C = 5µF , L = 1.401 Henrys. The 3dB breakpoint is 159.15 Hz.

2.4.3 Notch Filtering

Consider the circuit in Figure 3:Right. From (65) we have

Vout =
ZL + ZC

ZL + ZC + ZR
=

1
1 + ZR

ZL+ZC

=
1

1 + R

j(ωL− 1
Cω )

(104)

Thus
‖Vout‖ =

1√(
1 + R

ωL− 1
Cω

)2
‖Vin‖ (105)



Thus the resonant (valley) frequency is at

ωC =
1

ωL
(106)

ω =
1

LC
(107)

f =
1

2πLC
(108)

To get the 3 dB breakpoints of the filter

‖Vout

Vin
‖2 = 0.5 (109)(

1 +
R

ωL− 1
Cω

)2

= 2 (110)

R

ωL− 1
Cω

= ±1 (111)

ω2L± ωR− 1
C

= 0 (112)

ω =
±R±

√
R2 + 4 4L

C

2L
(113)

Note √
R2 + 4

L

C
> R (114)

Thus our solution of interest is

ω =

√
R2 + 4 4L

C ±R

2L
(115)

and the 3dB bandwidth is

∆ω =
1

RC
(116)

∆f =
1

2πRC
(117)

(118)

Figure 4:Right shows the frequency response curve of a filter wioth R = 1000Ω and
C = 5µF , L = 1.401 Henrys. The 3dB breakpoint is 159.15 Hz.

3 Analysis of Transient Responses

If we think of the previous sections as an application of the bilateral Laplace Trans-
form (the Fourier transform if we force s = 0+jω). This is useful for cases in which
the signal has been operating for infinitely long thus erasing the effects of the initial
conditions. In this section we focus on the analysis of transient effects

3.1 LR Circuit

Consider a resistor an inductor connected to a voltage source V (t). We have



R

L
I(t) +

dI(t)
dt

=
1
L

V (t) (119)

with initial condition

I(0) = i0 (120)
(121)

let the time constantτ = L/R. (In RC circuits the time constant is RC). τ is the
time necessary to decay 36.7 % of initial value. Thusxs

e
1
τ t 1

τ
I(t) + e

1
τ t dI(t)

dt
=

d

dt
e

1
τ tI(t) = e

1
τ t 1

L
V (t) (122)

Integrating both sides∫
de

1
τ uI(u)du = e

1
τ tI(t) + C =

1
L

∫
e

1
τ uV (u)du (123)

Thus
I(t) = −Ce−

1
τ t +

1
L

e−
1
τ t

∫
e

1
τ uV (u)du (124)

Where the constant C is chosen to satisfy the initial condition.

Note if there is no driving force, i.e., V (u) = 0 we have

I(t) = e−
1
τ tC (125)

This part of the solution is called the “Zero Input Response” or the “Transient
Response”, or the “Natural Response”. Moreover, if the initial state is zero then

I(t) =
1
L

e−
1
τ t

∫ t

0

e
1
τ uV (u)du (126)

This part of the solution is called the “ Zero State Response”, or the “Force Re-
sponse”, or the Steady State Response.

Consider the case in which V (t) = v. We have

e
1
τ tI(t) = −C

∫
e

1
τ uvdu = C̃ +

v

L 1
τ

e
1
τ t = e−

1
τ tC̃ +

v

R
(127)

Where
i0 = 0 = C̃ +

v

R
(128)

Thus,
I(t) =

v

R
(1− e

1
τ t) (129)

We can also solve the problem using the unilateral Laplace transform. Applying
the transform to both sides of (139)

RÎ(s) + sLÎ(s)− I(0) = V (s) (130)

Thus

Î(s) =
V̂ (s)− I(0)

R + sL
(131)

Letting I(0) = 0 and V (t) = vu(t) we get

Î(s) =
v

s(sL + R)
(132)



First we find the weight associated with the root s = 0

Î(s) =
k0

s
+ Ĝ(s) (133)

Thus

k0 = sI(s)|s=0 =
v

R
(134)

Ĝ(s) = I(s)− k0

s
=

v

s(sL + R)
− v

Rs
=

v

s

R− sL−R

R(sL + R)
(135)

= −vL

R

1
sL + R

= − v

R

1
s + 1

τ

(136)

Thus
Î(s) =

v

Rs
− v

R

1
s + 1

τ

(137)

and taking the inverse Laplace in both sides

I(t) =
v

R
u(t)− v

R
e−

1
τ tu(t) =

v

R
(1− e−

1
τ t)u(t) (138)

3.2 RC Circuit

Consider a resistor and capacitor connected to a voltage source V (t) = v. We have

V (t) =
Q(t)
C

+ I(t)R (139)

with initial condition

Q(0) = q0 (140)
(141)

Taking derivatives
dV (t)

dt
=

1
C

I(t) + R
dI(t)
dt

(142)

We will focus on the case of a constant voltage source, i.e.,

dI(t)
dt

= −1
τ

I(t) (143)

where the the time constant τ = RC. τ is the time necessary to decay 36.7 % of
initial value. Thus

I(t) = Ke−
1
τ t (144)

where K is determined by the initial conditions. Note

Q(t) = Q(0) +
∫ t

0

I(s)ds = q0 + K
(
1− τe−

1
τ t
)

(145)

We now I(t) → 0 as t →∞ thus

Vc(∞) def= lim
t→∞

1
C

Q(t) = v (146)

Taking →∞ we get
Vc(∞) =

q0

C
+ K = v (147)



Thus
K = v − q0

c
= v − v0 (148)

where
v0

def=
q0

C
(149)

and we get
V (t) = v0 + (v − vo)

(
1− τe−

1
τ t
)

(150)

3.2.1 Multiple Rs

If we have multiple Rs in series/parallel with a capactitor or an inductor, we use
Thevenin’s theorem to convert all the Rs into an equivalent R in series with the
capacitor or resistor component.

Consider the following circuit: (Resistor1, Capacitor) in parallel with Resistor2 and
in parallel with a voltage source V. In this case Resistor 2 has no effect whatsoever
on the capacitor. However if there is a Resistor 2 and Capacitor are in parallel
and both are in series with Resistor 1. In this case Resistor 1 and 2 have an effect
on the capacitor. For example if Resistor2 = 0 Ohm then the assymptote voltage
accross capacitor is V. However if Resistor 2 = Resistor 1 neq 0 then, since we have
a voltage divider, the assymptote voltage accross capacitor is V/2

If there is a capacitor in parallel with a resistor and connected to a voltage source
-¿ The resistor

3.3 Discrete Time Computer Simulations

Consider a LRC circuit in series, characterized by the differential equation

V (t) =
1
C

Q(t) + L
dI(t)
dt

+ RI(t) (151)

with initial conditions

Q(0) = Q0 (152)
I(0) = I0 (153)

We can approximate the solution using Euler’s method, i.e. we choose a small step
size ∆t and iterating

∆I(t) =
1
L

(
V (t)− 1

C
Q(t)−RI(t)

)
∆t (154)

I(t + ∆t) = I(t) + ∆I(t) (155)
Q(t + ∆t) = Q(t) + I(t)∆t (156)

Note a conductor is a circuit with no impedance, i.e., R → 0, L → 0, C →∞. Thus
to make a CR circuit, we let L → 0. In such case as L → 0

∆I(t)
∆t

→∞ (157)

This expresses the fact that in such condition I(t) catches up instantaneously with
its desired value i.e.

V (t) =
1
C

Q(t) + R
dQ(t)

dt
(158)



or equivalently
dVc(t)

dt
=

V (t)− Vc(t)
RC

(159)

where

Vc(t)
def=

Q(t)
C

(160)

Thus, using Euler’s method

Vc(t + ∆t) = Vc(t) +
V (t)− Vc(t)

RC
∆t (161)

with initial condition
Vc(0) = ṽ0 =

q0

C
(162)

To get an LR circuit we let C →∞, i.e., 1
C = 0.

4 Input Output View

This is a crucial issue. Note circuits seem to be inherently non-feedforward. Every
component has an effect on every other component. On the other the feed-forward
view of processing is very important. We want a signal to drive other components
and we do not want the other components to have an effect on our signal. Designing
sources with low impedance and loads with high impedance seems to be the way this
is achieved

4.1 Thevening Equivalent

It seems to me, but would like to confirm on this, that a 2 terminal component of a
linear circuit is fully characterized by its transfer function, i.e., a function that tells
how it converts voltage into current and viceversa.

By definition, in any linear circuit the current (and voltage) at any point is a linear
combination of the independent voltage sources Vi and independent current sources
Ij in the circuit

I(z) =
∑

ai(z)Vi(z) +
∑

bj(z)I(z) (163)

where I is the current at a fixed point in the circuit and z is a complex number.

Suppose we now have an entire linear circuit with two terminals to which we can
plug other circuits. To characterize the behavior of the entire circuit all we need
is the transfer function of the circuit, i.e., how it converts voltage into current or
viceversa. To do so we apply an external voltage to the two external terminals of
the circuit and observe the current flowing throught the terminals. By linearity we
have that

I(z) =
∑

i

ai(z)V int
i (z) +

∑
j

bj(z)Iint
j (z)− c(z)V ext(z) (164)

where int stands for independent voltage and current sources internal to the circuit.
Now let

VThev(z) def= c(z)

∑
i

aiV
int
i (z) +

∑
j

bjI
int
j (z)

 (165)

RThev(z) def=
1

c(z)
(166)



Thus

I(z) =
VThev(z)− V ext

R Thev
(167)

Which corresponds to the transfer function of a voltage source VThev(z) in series
with an impedance RThev.

To estimate VThev(z) apply an external voltage kV ext(z) and find the value of k for
which current does not flow accross the external terminals. This thus corresponds
to the z component of the voltage that could be measured with the terminals in
open circuit.

To estimate RThev set allo internal sources to zero and measure the impedance
accross the external terminals: Since the internal sources are set to zero we get

I(z) =
−V ext(z)
RThev(z)

(168)

and

RThev(z) =
−Vext(z)

I(z)
(169)

The Thevening equivalence is very important for circuit compositionality, i.e., we
can connect two entire circuit and analyze the behavior of the two coupled circuits.
The original circuit with two external terminals (e.g., an amplifier) is called the
source. The circuit we attaching to the orignal (e.g., a speaker) is called the load.
The load is also called the “input” circuit and the source the “output” circuit. This
later designation takes the point of view of the source (it outputs signals that serve
as input to the load circuit). I personally find this confusing for i tend to think of
the source as providing input to the load.

Using the Thenevin equivalence we see that the source and load circuits have a
voltage divider relationship. Thus

VLoad = VSource
ZLoad

ZLoad + ZSource
(170)

In many cases we want the source voltage signal to be as unaffected as possible
by the load circuit. Particularly damaging is if the impedance of the load varies
with the signal source levels, we want the effect of that impedance to be as small
as possible otherwise the signal will be distorted. Thus we want ZLoad >> ZSource.
A good rule of thumb is ZLoad at least 10 times bigger than ZSource.

The source circuit is said to “drive” the load. Good source circuits have very small
impedance, in the order of milli Ohms. Because they do not “bend” under load
they are called “stiff” sources.

Measuring instruments, on the other hand, ought to have little influence on the
measured circuit, thus they are designed to have very high impedance.

5 Cable Model

Definitions Figure 5 shows a standard cable model. The different components
are defined as follows:

• Rdc - Commonly referred to DCR which is the series resistance of a cable
at zero frequency.
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Figure 6: Left: RCA; 2 Center: BNC; Right: F-connectors

• Rac - The resistive portion of the cables series resistance as a function of
frequency due to skin effect 1.

• Rs - Total Series Resistance (mohms) measured tip to tip at one end of
the cable while the other end is shorted. Note: Rs = Rac + Rdc (minus
instrumentation inaccuracies identified below)

• Ls - Series Inductance (uH) measured tip to tip at one end of the cable
while the other end is shorted. Check out our article on Cable Inductance
for more info.

• Cp - Parallel Capacitance (pF) measured tip to tip at one end of the cable
while the other end is open circuited.

• G - G conductance ( 1 / Rdielectric). The major relevancy roles of the
dielectric in this application are to serve as isolation between the two con-
ductors and control the capacitance of the cable based on the conductor
spacing and dielectric constant.

5.1 Cable and connector types

source: audioholics.com

• Zip cable : Two cords side by side
• Coax cable: Shield outside runs ground, Line core inside The composition of

the shield in will determine how effective it is at preventing interference; the
best shields for broad-frequency coverage, all the way from low-frequency
hum to RFI, are combination shields consisting of both a heavy braid (wire
woven around the dielectric in a sort of mesh) and a full-coverage foil (usu-
ally aluminum, wrapped around the dielectric). The most common way

1It is the tendency of alternating current to flow near the surface of a conductor, thereby
restricting the current to a small part of the total cross-sectional area and increasing
the resistance to the flow of current. The skin effect is caused by the self-inductance of
the conductor, which causes an increase in the inductive reactance at high frequencies,
thus forcing the carriers, i.e., electrons, toward the surface of the conductor. At high
frequencies, the circumference is the preferred criterion for predicting resistance than is
the cross-sectional area.



to save a bit of money on cable construction here is in the braid; lower-
quality coaxial cables will sometimes use an aluminum braid (significantly
less conductive, and consequently less effective, than copper), with poor
coverage–as low as 60%. Generally, one should look for a copper braid,
with 95% coverage (100%, while it’d be nice, isn’t possible because the na-
ture of wire braid is that it has holes caused by the way it’s woven), coupled
either with a full-coverage layer of foil or with another heavy braid.

• RCA (Radio Corporation America) Plug and Jack: the most common con-
nector type on consumer gear for composite and component video, as well
as for both digital and analog audio. It’s not a very good connector, as
connectors go, but as it’s what equipment manufacturers have given us,
it’s what we often have to use. RCA jacks color-coded yellow on a device
usually are composite video inputs or outputs.

• BNC is the standard connector for most video signals on professional gear,
and is showing up increasingly on high-end consumer gear as well. It will
be labeled similarly to the RCA, indicating composite video (one connec-
tion), Y/C s-video (two connections), Y/Pb/Pr (three connections), or one
form or another of RGB. The most common confusion with BNCs, in our
experience, is that people often assume the female connector is a male; the
problem is that both the male and female connectors have what looks like
a pin in the center. On closer inspection, however, you’ll see that a female
BNC’s ”pin” is actually a receptacle for the male pin. A panel-mounted
BNC will ALWAYS be female; a cable-mounted BNC will almost always be
male, though there are exceptions (such as our breakout adapters, which
have female BNCs to join with standard cable-mount male BNCs).

• F-connector: is the screw-on type connection used for most antenna and
cable TV connections. F-connectors are rarely used for anything other than
RF; the one notable exception being that they were used as digital audio
connectors on some laser disk players.

5.2 Audio Cable: Source audioholics.com

My Polk home stereo speakers are set for 8 Ohms, and a recommended amplification
of 20 to 150 Watts. Since W = V I = RI2 the recommended current is 1.58 to 4.33
Amps. Wow, these are huge currrents!

Because speakers are driven at low impedance (typically 4 or 8 ohms) and high
current, speaker cables are, for all practical purposes, immune from interference
from EMI or RFI, so shielding isn’t required. The low impedance of the circuit also
tips the balance of concern from capacitance, which is important in interconnect use,
to inductance, which, while a concern, can be controlled only to a limited degree.
The biggest issue in speaker cables, from the point of view of sound quality, is simply
conductivity; the lower the resistance of the cable, the lower the contribution of
the speaker cable’s resistance to the damping factor, and the flatter the frequency
response will be. While one can spend thousands of dollars on exotic speaker cable,
in the end analysis, it’s the sheer conductivity of the cable, and (barring a really odd
design, which may introduce various undesirable effects) little else that matters.

The load is the resistance (impedance) presented by the speakers that is seen by
the amplifier. This can also include any crossovers and circuits connected to the
speakers. When the load decreases, the amplifier’s output increases. There is less
resistance to the current, and the speakers can draw more power from the amp.
Drawing more power than the amplifier was designed for will damage the amp.
Every amplifier is designed to handle a certain load. For home amplifiers this



Frequency Ls Rs Cp

(Hz) (µ H) (m Ω) (pF)
100 0.194 2.20 20
1K 0.195 2.19 18.7

100K 0.184 6.90 15.6
1M 0.172 48.5 13. 6

Table 2: Characteristics of high quality Audio Cable (Brand AV, 10AWG). Source:
audioholics.com

number usually starts with 8 ohms. With car amplifiers it is usually 4 ohms. All
amplifiers can handle a higher resistance (load), but they will produce less output.
Most quality amplifiers can also handle a lower resistance. Most car amps can
handle a 2 ohm load, while some can go as low as 1/2 ohms. (source lalena.com)

Do a spice analysis with source of 1V at different frequenceies and a load of 4 ohms
for speaker system)

The typical 12AWG zip (twin parallel cords) cord has about 3.4 mohms of loop
resistance per foot, .200uH/ft of Inductance and about 20pF/ft of capacitance.

If we examine the data from our various Speaker Cable Face Off articles, particularly
Speaker Cable Face Off I, we see that a 10ft length of 12AWG zip cord terminated
into a 4 ohm load only experiences -.088dB of loss at 20kHz and about 2nsec of
group delay. Increase the cable length to about 50ft and we do see losses surmount
to about -.745dB and 209nsec. Note that at 20 kHz, a phase shift of 36 degrees
represents 5 microseconds (almost 24 times larger than our 50ft cable delay), this
delay being considered as close to the limit of human directionality perception.

Further examining the data from our article Skin Effect Relevance in Speaker Ca-
bles we illustrated that model for human hearing is highly insensitive to ultra high
frequency response and also discussed that music above 8kHz is harmonic in nature
with minimal content at the high frequency extremes. It is a good idea however
to use lower gauge wire (10 AWG or less) for runs greater than 50ft to minimize
these losses especially when driving loudspeakers with a low impedance (4 ohms or
less) profile. Note however a 5 microsecond delay has only been detected with any
degree of certainty, under controlled laboratory conditions, within the approximate
3500Hz region where the ear is most sensitive. Again this detection must be in an
extremely quiet environment, certainly below NC20, almost anechoic in fact. Source
(http://www.audioholics.com/techtips/audioprinciples/interconnects/SpeakerCablelength.php,
April 26, 2006).

5.3 Video Cable

NTSC signals range 1MHz to 5 MHz.

Characteristic Impedance Consider the circuit in Figure ?? representing a
cable infinitely long. As we close the switch electrons will propagate at close to the
speed of light prgresively chargint the capacitors as they go along. A current will
run through the voltage source. The impedance created by this line is called the
“characteristic impedance” and it can be shown to be
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Figure 7: An infinitely long transmission line.

Z(f) =

√
R + j2πfL

G + j2πC
(171)

It is unclear to me why the equation above is not a function of time. It may be
that it is just a fact or it may be that this assumes the switch has been closed for
infintely long. I dont know which one is true. It is interesting to observe how the
characteristic impedance behaves as a function of the frequency f

Z(f) ≈



√
R
G , for f = 0√

R
j2πfC , for audio signal (f order 1KHz)√

R
j2πfC√
L
C , for electronic video signal (f order 1MHz)

(172)

Since characteristic impedance is important only at high frequencies, the number
reported is the limit as f → infty, which is

√
L/C.

If a cable were many times longer than the signals’ wavelenght then it could be
considered to be of infinite lenght. Note the wavelenght (speed of light/ frequency)
of a 3 Khz signal is about 30 Km and the wavelenght of a 3Mhz signals is about
30 meters. Thus the lenght of typical audio and video cables cannot be considered
infinitely long.

I dont understant the following statement. Why is the case that when the cable is
short with respect to the wavelenght, characteristic impedanced is not an issue?

Most wires will have a speed of travel for AC current of 60 to 70 percent of the speed
of light, or about 195 million meters per second. An audio frequency of 20,000 Hz has
a wavelength of 9,750 meters, so a cable would have to be four or five *kilometers*
long before it even began to have an effect on an audio frequency. That’s why the
characteristic impedance of audio interconnect cables is not something most of us
have anything to worry about. Normal video signal rarely exceed 10 MHz. That’s
about 20 meters for a wavelength. Those frequencies are getting close to being high
enough for the characteristic impedance to be a factor. High resolution computer
video signals and fast digita signals easily exceed 100 MHz so the proper impedance
matching is needed even in shor cable runs.

If the cable is terminated by a load of impedance different from the characteristic
impedance, the traveling waves of voltage and current will be reflected. The voltage
ratio between the incident wave and the reflected wave can be whown to be

ρ =
Vi

Vr
=

Zl − Zc

Zl + Zc
(173)



Impedance 75 Ohms
Inductance: 0.115 microhenries/feet

Capadicantce: 20.5 pf/Feet
Propagaation Velocity: 66 % (speed of light?)

Delay: 1.54 ns/feet
Conductor DC resistance: 49 Ohms/1000 feet

Shield dC resistance: 2.6 Ohms/1000 feet
Attenuation at 1 Mhz 0.6 dB/100 feet
Attenuation at 10 Mhz 1.1 dB/100 feet
Attenuation at 100 Mhz 3.4 dB/100 feet
Attenuation at 1000 Mhz 12 dB/100 feet

Table 3: Typical numbers for video cable (Belden 8264)

Table 4: tab:videocablespecs. Note
√

L/C = 74.898Ω

where Zc is the characteristic impedanced of the cable and Zl the impedance of the
load. Note

ρ =


0, if Zl = Zc, i.e, impedance matching case
−1, if Zl = 0, i.e., closed circuit case
1, as Z →∞, i.e., open circuit case

(174)

Reflections are bad because:; (1) we lose power of the original signal; (2) We create
reflection noise. Thus the ideal case is when the characteristic impedance of the
cable equals the characteristic impedance of the load. Note reflections will also
happen at any point if the cable does not have uniform impedance. It is quite
remarkable that the impedance of the cable, is independent of the cable’s lenght (I
know this is true for the case with impedance matched load and cable. I dont know
whether it is also the case for non-matched impedances).

Video cable is manufacture to have a characteristic impedance of 75 Ohms. Video
devices also have impedances of 75 Ohms, to maximize power transfer and minimize
reflections.

6 Junction Diode Model

Use the specs of the 1n4001 as the standard. It is currently the most popular recti-
fying diode

6.1 Notation

• <+: Real numbers.
• <+: Nonnegative real numbers.
• C: Complex numbers.
• Forward biased: Current flows from anode (positive end) to cathode (neg-

ative end).
• Reverse biased: Current flows from cathode to anode.
• Leakage current: Same as reverse current. Current when diode is reverse

biased.



• Forward current: Current when diode is forward biased.

• Avalanche current: Huge current drop at the breakdown voltage of a
rerverse biased diode.
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Figure 8: The I-V curve for Silicon and Germanium diodes

The diode model will use the following parameters:

• q: Electron charge: 1.610−19 Coulumbs.

• k: Boltzmann’s constant2: 1.3810−23.

• T : Temperature in Kelvin (Centigrades + 273.16).

• VT : Thermal Voltage.

VT
def=

kT

q
(175)

At standar room temperature is 27 degrees centigrades we have

VT ≈ 0.026 (176)

• η: Emision coefficient. η = 2 for Silicon junctionss, and η = 1 for Germa-
nium juncions. I’ve also seen η = 1.4 for Silicon.

• Is: Saturation reverse currrent. Current when the diode is reverse biased.
At 27 degrees centigrades it is about 10−6 A for Germanium and about
10−8 A for Silicon. It approximately doubles every 10 degrees C rise in
temperature.Other figures I’ve seen are 10−4 for Germanium and 10−10 for
Silicon.

• Imax Maximum forward current. For LEDs, If (max) is about 30 mA. For
diodes is in the order of 1 A. The popular 1N4001 diodes have an Imax = 1
A.

• Vb: Peak inverse voltage, or reverse breakdown voltage, beyond which the
diode breaks down. In range of -0.5V for LEDs and -50 V for rectifiying
diodes. The popular 1N4001 diodes have an If(max) = −50 V.

2This constant derives its name from the Austrian physicist Ludwig Boltzmann (1844-
1906). It represents the increment in the energy of a molecule per Kelvin degree. It is
approximately 1.3807x10− 23 Joules per Kelvin degree.



• Knee (or threshold) voltage: The point at which the diode suddenly begins
to conduct, i.e., the forward current suddenly increases. For silicon diodes
a standard accepted value is 0.7Volts,and 0.3 for Germanium diodes, 1.1
for Gallium Arsenide diodes, 2V for LEDs. Some say it corresponds to a a
standard current “threshold” of 1mA.

A good first approximation model for the range of operation of the diode, both
in forward and reverse bias, is given by the following equation: for I < Imax and
V > Vb.

I = Is(e
V

ηVT − 1) (177)

or equivalently

V = ηVT log
(

I + Is

Is

)
(178)

Where V is the voltage difference accross the diodes, and I the current accross the
diode. This is known as the Schottky diode equation, or simply the diode equation.

Note for I >> Is

V ≈ ηVT log
(

I

Is

)
(179)

The value of V at maximum forward current thus depends on the emission coefficient
η. Rectifying diodes have η ≈ 1 and LED η ≈ 12, thus the voltage drop in LED is
about twice as much as the drop in rectifying diodes.

6.2 Typical Values

• Typical silicon rectifying diode: 1n4001: η = 2.57, Is = 1.25× 10−6A

• Typical germanium diode:

• Typical LED: η12.59, Is = 4.45× 10−5.

6.3 Parameter estimation

Given two points of the iv curve η and Is can be estimated as follows

η =
V2 − V1

vT log(i2/i1)
(180)

Is =
i1

ev1/(ηvT )
(181)

6.4 LED

Light emittind diodes have a typical forward voltage drop of 1.5 to 3 volts instead
of 0.7 volts of rectifying diodes. Their typical operating current is about 5 mA to
xs20 mA. When using an LED with a voltage source, a resistor in series must be
added to limit current to be about 20 mA. Also, LED have much lower PIV rating
than rectifying diodes. Rectifying dioes in the order of 50 Volts, and LEDs in the
order of 5 Volts.

6.5 Simplified Models

• Ideal Diode: Open circuit (i.e., infinite resistance) for V < 0.7 and close
circuit (i.e., zero resistance) for V ≥ 0.7.



• Locally linear model:
I approximated the diode equation for the following parameters: VT =
0.026, η = 1.4, Is = 10−10, P IV = −10V, Imax = 0.5A. I used linear re-
gression local to 3 regions: negative voltage, 0 to threshold, and above
threshold. For a threshold of 0.7 I get teh following locally linear approxi-
mation:

I =


V/(66671× 106) for −10 < V < 0
V/192 for 0 < V < 0.7
(V − 0.7)/0.32 + 0.7/192 for V > 0.6, I < 0.5

(182)

For a threshold of 0.6 we get the following locally linear approximation

I =


V/(66671× 106) for −10 < V < 0
V/2250 for 0 < V < 0.6
(V − 0.6)/0.97 + 0.6/2250 for V > 0.6, I < 0.5

(183)

This suggests modeling the diode in 3 regions. When reverse biased it
behaves as a resistor in the order of 105 Mega Ohms. When forward biased
with voltage less than 0.6, it behaves as a resistor in the order of 2K Ohms.
When forward biased with voltage more than 0.6 it behaves like a 1 Ohm
resistor in series with a voltage source of −0.6/0.97 + 0.6/2250 ≈ 0.6 V olts

6.6 Diode-Resistor circuit

Consider the circuit in Figure 9 left: a 5 volt source connected in series to a 220
Ohms resistor and a standard rectifying diode. We get two unknowns: V , the
voltage difference accross the diode junction, and I, the circuits, current. We also
get two constraints:

5 = V + 200I (184)

I = 10−12(e
V

0.026 − 1) (185)

Thus
5− V

200
= 10−12(e

V
0.026 − 1) (186)

The right side of Figure 9 displays the problem graphically. The continuous line rep-
resents the diode equation, and the dotted like the resistor equation. The solution
is at the intersection point, at which point both equations are satisfied.

One way to find the solution iteratively is as follows: (1) Start with an estimate of
V . Given that V plug it on the diode equation to get an estimate of I. (2) Plug
the I into the resistor equation to get a refined estimate of V . (3) Iterate.

An approximate solution can be obtained by assuming an idealized diode with
constant voltage drop of 0.6 independent of current. Then the current would be

(5− 0.6)/220 = 0.02 Amps (187)

The power disipated by the resistor is 0.02× 4.4 = 0.088 Watts. Standard resistors
can safely dissipate about 100 mWatts.
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Figure 9: Simple Diode-Resistor Circuit

6.7 Diode-Resistor-Capacitor circuit

V (t) = RI(t) + Vc(t) + h(It) (188)

where

Vc(t)
def=

Q(t)
C

(189)

Given a small step size ∆t and ignoring high order terms

V (t) = RI(t) + Vc(t−∆t) + I(t)∆t + h(I(t)) (190)

Where Vc is the voltage across the capacitor and h is the diode equation. We can
think of this as an Resitor-Diode problem

V (t)− Vc(t−∆t) = I(t)(R + ∆t) + h(I(t)) (191)

If we know Vc(t − ∆t) We can solve for I(t) as in the Resistor-Diode problem an
then update to Vc(t)

Vc(t) = Vc(t−∆t) + ∆tI(t) (192)

Note we are using the constraint that

I(t) = lim
∆t→0

Q(t)−Q(t−∆t)
∆t

(193)

It is also instructive to use the following alternative method. Assuming we have a
good estimate of I(t) and ∆t is small we can linearize h as follows

V (t + ∆t) = I(t + ∆t)R + Vc(t + ∆t) + h(I(t)) + [I(t + ∆t)− I(t)]h′(I(t)) (194)

where

h′(I) def=
dV

dI
=

ηVT

I + Is
(195)

is known as the diode’s “dynamic impedance”. We can think of this as a circuit
with a current dependent resistor

R + h′(I(t)) (196)

a capacitor C, and a current dependent voltage source

V (t)− h(I(t)) + I(t)h′(I(t)) (197)



Thus

Vc(t + ∆t) = Vc(t) +
1

CR̂(t)

(
V̂ (t + ∆t)− Vc(t)

)
∆t (198)

I(t + ∆t) = C
Vc(t + ∆t)− Vc(t)

∆t
(199)

where

R̂(t + ∆t)
def= R + h′(I(t)) (200)

V̂ (t + ∆t)
def= V (t + ∆t) + I(t)h′(I(t))− h(I(t)) (201)

(202)

Note this linearization depends on having a good estimate of I(t), this is particularly
important for the initial conditions. Given initial condition Vc(0) and V (0) we can
solve I(0) by thinking of it as a diode-resistor problem. Hereafter we can continue
solving iteratively using the linearize h approach. Figure 10 shows a simulation
using this approach, of a 10 microFarad capacitor charging through a 200 Ohm
resistor in series with a diode and a 3Volt power supply. The left side of the Figure
shows the voltage accross the capacitor, the right side the dynamic impedance of
the diode.
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Figure 10: Left: A capacitor charging through a resistor in series with a diode;
Right: Dynamic impedance of the diode as the capacitor charges.

7 Junction Transistor

7.1 Conventions: Junction Transistor: Ebers-Moll Model

Idealized parameters for 2N3904



Parameter Typical Range
hFE 200 [30,300]
Ib 10 mA [0.1, 100] mA

V sat
CE 0.07V < 0.2V

V sat
BE 0.7V < 0.95V

Based on this we will use the following convention for a typical idealized transistor:
β = hFE = 100, V sat

CE = 0.2V , V sst
BE = 0.7V .

Use the specs 2N3904 as the standard NPN and the 2N3906 as the standard PNP
transistor. They are the most popular in the US Here are some paopular transis-
tors: PN2222A, 2N3904, 2N4401, 2N2222A, 2N2222, 2N3906, PN2907, 2N4403
, KSP10, 2SC2570, 2SC2570A, Nowadays, the most visibly popular transistor, at
least in the USA, is the 2N3904, a small NPN component that can be found in
hundreds, if not thousands, of types of electronic devices. The 2N3906 (its PNP
counterpart) and the 2N2222 (NPN) are also very popular. Radio Shack, seem to
be favoring the 2N3904 over the 2N2222 as their generic NPN switching transistor
The NTE123AP is equivalent to the 2N2222 (It is the third most popular device in
NTE. The first most popular is the NTE125 rectifier, and the second most popular
is the heat sink compound. The NTE125 is equal. to a 1N4007 A popular rectifier
is the 1N4001 Designations: 2N... means American transistors, BC... are Euro-
pean transistors. American designation: 1N.... is used for semiconductors with 1
junction like a diode i.e. 1N4148, 2N.... is used or semiconductors with 2 junc-
tions like a transistor i.e. 2N2222 3N... for other semiconductors like smal IC* like
optocopler i.e. 3N435, Take the 2N2222 as a standard and use its parameters as
typical parameter values.

Figure 11 Display the junction transistor model proposed by Ebers and Moll (EM) in
1954 [? ]. This model is also called the coupled diode model. The model is adequate
for static, DC behavior. Gummel and Poon [? ] proposed a more advanced model
that subsummes Ebers-Moll and deals with transient behavior.

Transistors have 4 operating states (See Table 5): (1) Active forward, or linear
forward; (2) Active reverse, or linear reverse; (3) Saturation, or “ON” ; (4) Cutoff,
or “OFF”.

BC Forward Biased BC Reverse Biased
BE Forward Biased Saturated Forward Active
BE Reverse Biased Forward Active Cut-off

Table 5: Modes of transistor operation. In addition breakdown modes occur if VCE

or VBE are too extreme.

The following model covers the 4 modes of operation.

7.2 Model Parameters

There are two types of parameters: Those describing the limits of normal opertion
of the transistor and those describing the behavior of the transistor during normal
operation. Regarding the second type the model has only three free parameters:

• IES : Base-emitter transport saturation current. Typical valule: 50 nA.

• ICS : Base-collector transport saturation current. Typicdal value: 64 nA

• αF : Forward transport factor. Typical value: 0.96.



The parameter αR, reverse transport factor can be obtained from the following
relationship:

IESαF = ICSαR (203)

From the typical values of the other parameters, we get a typical value for αR of
0.75.

7.3 Model Equations

The junctions in transistor are built to have emission coefficient η = 1. Thus from
the diode equation we get (177)

IF = IES

(
e

VBE
vT − 1

)
(204)

IR = ICS

(
e

VBC
vT − 1

)
(205)

(206)

where the thermal voltage vT is defined in (??). In addition, since current conserves
(see current sign conventions in Figure 11),

IE = IF − αRIR (207)
IC = −IR + αF IF (208)
IE = IB + IC (209)

Thus
IB = (1− αF )IF + (1− αR)IR (210)

Since voltage conserves we get

VCE = VCB + VBE = VBE − VBC (211)

Note in this model for the base current to be negative we need IF or IR to be
negative and add up to a negative value. Note the current is lower bounded as
follows

IB ≥ −
(
(1− αF )IES + (1− αR)ICS

)
(212)

7.3.1 Useful Relationships

• (IF , IB) as a function of (IC , IB)

IF =
IB + (1− αR)IC

1− αF αR
(213)

IF =
αF IB − (1− αF )IC

1− αF αR
(214)

• IC as a function of (IB , VCE)

IC = G(VCE)IB + H (215)

where

G(VCE) =
αF IES eVCE/VT − ICS

(1− αR)ICS + (1− αF )IES eVCE/VT
(216)

H = β
(
(1− αF )IES + (1− αR)ICS

)
+ ICS − αF IES ≈ 0 (217)



αR IR

αF IF

Base

IR

IF

Ie

Ic

Ib

Collector

Emitter

Base

Emitter

Figure 11: Ebers-Moll Junction Transistor model: Two diodes with 2 current sources
coupled to the diodes. The small arrows outside the circuits display the current
direction signs used in this document.

We treat H as beign effectively 0, in which case

G(VCE) ≈ IC

IB
(218)

Note
lim

V CE→∞
G(VCE) = lim

V CE→∞

IC

IB
=

αF

1− αF
= β (219)

which is independent of IB I have noticed however in Spice simulations that
the ratio IC/IB with large VCE increases with IB quite significantly.
The following approximation is useful

G ≈ αF IES eVCE/VT

(1− αR)ICS + (1− αF )IES eVCE/VT
= β logistic

(
VCE

V T
− θ

)
(220)

where

β
def=

αF

1− αF
(221)

θ
def= log

(
1− αR

1− αF

ICS

IES

)
(222)

Figure ?? Left shows the current gain G as a function of VCE and the
logistic approximation.

dG

dVCE
≈ G (1−G/β)

V T
; (223)

Figure ?? Right shows the derivative of G with respect to VCE and the
derivative of the logistic approximation.

• VCE as a function of IB , IC

Inverting (216) is difficult. Instead we will invert the logistic approximation
(220) as follows

VCE = VT

(
θ − log

(
IB

IC
β − 1

))
, for IC < β IB (224)



0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

VCE (Volts)

G
ai

n 
=

 IC
/IB

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

VCE (Volts)

D
er

iv
at

iv
e 

of
 G

ai
n

Exact
Approximation

Exact
Approximation

Figure 12: Left: Transistor’s Current Gain (IC/IB) as a function of VCE . Right:
Derivative of Gain with respect to VCE . Each figure shows the exact gain function
and the logistic approximation.

dVCE

dIC
=

1
IB

 VT

IC

IB

(
1− IC

IB

1
β

)
 , for IC < β IB (225)

• VBC as a function of (IB , VCE)

VBC = VT log

(
IB + (1− αR)ICS + (1− αF )IES

(1− αR)ICS + (1− αF )IES e
VCE
VT

)
(226)

Thus the value of VCE for which VBC = 0 is

τ = VT log
IB + (1− αF )IES

(1− αF )IES
(227)

If VCE > τ then VBE < 0. If VCE < τ then VBE > 0

7.4 State Analysis

Transistors have 3 terminals and thus 6 variables of interest:
IB , IC , IE , VBE , VCB , VCE . Of these 2 are redundant due to conservation of
current and current

IE = IB + IC (228)
VCE = VCB + VBE = VBE − VBC (229)

This leaves us with 4 independent variables. Now note if VBE , VBC are known then
from (204) and (??) all the current variables follow. Equations can also be used to
derive the 6 state variables from any 2 of the set. Thus, the state of the transistor
is fully determined by 2 state variables.
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the derivative of VCE with respect to IC , based on logistic approximation.

7.5 Simplified Model for Forward Active Case

In active forward state IR ≈ 0, in which case the EM model can be simplified as
displayed in Figure 15. From IR = 0 it follows that

IE = IF − αR = IF (230)
IC = αF IF = αF IE (231)
IB = IE − IC = (1− αF )IE (232)

Note3

β
def= hFE

def=
IC

IB
=

αF

1− αF
(233)

Thus if IB is known the other two currents are determined:
IC = βIB (234)
IE = IB + IC = IB(1 + β); (235)

Moreover, due to the diode equation, VBE is also determined:

VBE = vT

(
1 + log

(
Ib

(1− αF )IES

))
(236)

Finally, if in addition to IB , VCE is also known then VBC is determined:
VBC = VBE − VCE (237)

3This provides a standard way to estimate αF . A similar procedure can be used to
estimate αR while operating in active reverse mode.
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Figure 14: Left: Simplified Model for Forward Active case. Right: Representation
of variable dependencies. Ib is a current source and Vc a voltage source.

Further simplification of the active forward model can be achieved by modeling
the diode as an ideal diode with constant voltage drop ≈ 0.7 (See Right side of
Figure 15). The diode model can be futher simplified as a constant voltage drop
(i.e., voltage source (See Figure ??).

+ − + −

+
−

IC= 100 IB

0.7 V 0.7 V 0.2 V

C C

B B

E E

Figure 15: Left: Simplified Model for a Typical Transistor’s Forward Active Mode.
Right: Simplified Model for a Typical Transistor’s Saturation Mode.
Representation of variable

7.5.1 Example Circuit 1

Figure 16 Left shows the simplest transistor circuit I could think of. It makes the
point that you can control to transistor variables independently and the rest is set.
The independent variables in this circuit are IB and VC . From conservation of
voltage we have

VBC = VT log

(
IB + (1− αF )ICS + (1− αR)IES

(1− αR)ICS + (1− αF )IES e
VC
VT

)
(238)

VBE = VC + VBC (239)
IC = αF IF − IR (240)
IE = IC + IB (241)

Figure 17 Right shows the 4 dependent variables of the transistor for the 2 given
independent variables. The base current were: 0 mA, 0.025 mA, 0.050 mA, 0.075
mA, 0.1 mA.
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Figure 16: Left: Simple Transistor Circuit. Right: Four transistor dependent vari-
ables as a function of VCE, IB. Right: Resistor, Capactior, Transistor Circuit

7.5.2 Example Circuit 2: Base Resistor, Capacitor

Consider the circuit in Figure 16 Right. To getn intuitive understanding we will use
a discrete-time Euler approximation. Consider a time t for which VCA, the voltage
accross the capacitor, is known

v = IB(t)R + VCA(t) + VBE(t) (242)

VBE = h(IB(t)) = v + VT log

(
IB(t) + (1− αF )ICS + (1− αR)IES

(1− αF )ICS + (1− αR)IES e
VC
VT

)
(243)

We can find IB(t) by assuming a value of VBE(t) and solving for IB(t) in (242),
then using Ib(t) to solve for VBE(t) in (243), and iterating until convergence. Once
IB(t) is known we can get the voltage accross the capacitor for the next time step

VCA(t + ∆t) = VCA(t) + IB(t)∆t (244)

Successive application of this technique will converge to the solution as ∆t → 0.

If we have a good estimate for IB(t) and ∆t is small, we can linearize h

v = I(t + ∆t)R + VCA(t + ∆t) + h(I(t)) + [I(t + ∆t)− I(t)]h′(I(t)) (245)
where

h′(I) def=
dVBE

dI
=

VT

IB(t) + (1− αF )ICS + (1− αR)IES
(246)

We can think of this as a circuit with a current dependent resistor

R + h′(I(t)) (247)

a capacitor C, and a current dependent voltage source

V (t)− h(I(t)) + I(t)h′(I(t)) (248)

Thus

Vc(t + ∆t) = Vc(t) +
1

CR̂(t)

(
V̂ (t + ∆t)− Vc(t)

)
∆t (249)

I(t + ∆t) = C
Vc(t + ∆t)− Vc(t)

∆t
(250)



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

VCE (Volts) for different IB

IC
 (

m
A

)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

VCE (Volts) for different IB

IE
 (

m
A

)
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

VCE (Volts) for different IB

V
B

E
 (

V
ol

ts
)

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

VCE (Volts) for different IB
V

B
C

 (
V

ol
ts

)

Figure 17: Four transistor dependent variables as a function of VCE, IB. The base
current were: 0 mA, 0.025 mA, 0.050 mA, 0.075 mA, 0.1 mA.

where

R̂(t + ∆t)
def= R + h′(I(t)) (251)

V̂ (t + ∆t)
def= V (t + ∆t) + I(t)h′(I(t))− h(I(t)) (252)

(253)

Note this linearization depends on having a good estimate of I(t), this is particularly
important for the initial conditions. Given initial condition Vc(0) and V (0) we can
solve I(0) by thinking of it as a diode-resistor problem. Hereafter we can continue
solving iteratively using the linearize h approach.

Figure ?? shows a simulation using this approach, of a 10 microFarad capacitor
charging through a 2000 Ohm resistor in series with a diode and a 3Volt power
supply. The left side of the Figure shows the voltage accross the capacitor, the
right side the dynamic impedance of the diode.

7.5.3 Example Circuit 3: Collector Resistor, Capacitor

Consider circuit on Figure 16 Right.

v = RIC(t) + Vq(t) + VCE(t) (254)
IC(t) = f(IB , VCE) (255)

where Vq is the voltage accross the capacitor. For initial condition t = 0 we are
given Vq(0). We can solve for IC(0), VCE(0) by assuming a value for IC(0) solving



0 0.1 0.2
0

0.5

1

1.5

2

2.5

3

Seconds

V
C

A
 (

V
ol

ts
)

0 0.1 0.2
0

0.5

1

1.5

2

2.5

3

Seconds

V
C

E
 (

V
ol

ts
)

0 0.1 0.2
0

1000

2000

3000

4000

5000

6000

7000

8000

Seconds

B
E

 D
yn

am
ic

 Im
pe

da
nc

e 
(O

hm
s)

Figure 18: Euler approximation of Resistor, Capacitor, Transistor Circuit. Resistor
was 2K Ohms, and Capacitor 10 µ Farads

for VCE(0) on (254), using the obtained value to get IC(0) on (255) and iterating
until convergence. For any t, if IC(t), Vq(t) are known we can aproximate Vq(t+∆t)

Vq(t + ∆t) = Vq(t) + ∆t
IC(t)

C
(256)

which provide the initial condition of the capacitor for the next time step.

I tried the linearization approach by using the logistic approximation of the mapping
from VCE to IC given IB . This did not work well I’m not sure why. Also for the
approach in which we iterate back and forth between the two equations, I had
to do it with a small change rate, ie., instead of moving to the IC or VCE that
solves an equation for the other variable fixed, we just moved in the direction of
the solution using an exponential smoothing with γ = 0.99, otherwise the approach
would not converge Figure 19 are the results of a simulation of this circuit with
V = 1V olt, C = 0.1µF , R = 160Ohms, IB = 0.1mA, β = 24.

7.5.4 Common Port Configurations

Figure 20 shows the three typical input-output configurations: (1) Common Base;
(2) Common Collector and (3) Common Emitter.

• Common Base: Input is the collector currect and the collector/base volt-
age. Output is the emitter current and the base/emitter voltage.

• Common Collector: Input is the base current and the collector/base
voltage. Output is the emitter current and the base/emitter voltage.

• Common Emitter: Input is the base current and the collector/emitter
voltage. Output is the collector current and the base/collector voltage.
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Figure 19: Simulation of resitor and capacitor in series with collector. The base is
current clamped. V = 1V olt, C = 0.1µF , R = 160Ohms, IB = 0.1mA, β = 24.
The title of each column indicates the units for the Y axis. The rows represent
snapshots at different points in time.

Calling things input-output is a bit misleading since the output does have an effect
on the input. I still need to clarify in what sense it is ok to call things input-output.
I suspect it has to do with high outuput inpedance and low input impedance.

7.5.5 Properties of Active Forward State

• For a fixed IB the current accross C is independent of the voltage applied
between C and E, i.e, the collector behaves as a current source.

• For an operating transistor (forward active, and saturation) VBE = 0.6,
due to the rectifying diode from base to emitter. Consider the circuit in
Figure 21. We have

VB = 0.6 + IERE (257)

IE =
VB − 0.6

RE
(258)

Thus, as RE → 0 then IE → ∞ so for this circuit it is important to have
RE > 0.
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Figure 20: Three standard configurations: Left: Common Base; Center: Common
Collector; Right: Common Emitter
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Figure 21: Example Transistor Circuit

7.6 Simplified Model for Saturation State

Defined by the fact that both junctions are forward biased and teh current flows
from the collector through the emitter.

The right side of Figure 15 describes the variable dependencies in the active forward
model. For a fixed VC as Ib increases VBC will increase. When VBC becomes large
enough to forward bias the BC junction the system goes into saturated mode. The
base and collector currents at that point will be approximately

Isat
B ≈ V threshold

BC + VC − 0.8
(1 + β)R

(259)

Isat
C ≈ βIsat

B ≈ V threshold
BC + VC − 0.8

R
(260)

When VCE reaches the saturation value V sat
CE the base collector junction becomes

forward bias and IC cannot increase any longer. Typically V sat
CE is about 0.05 to 0.2

Volts. We say the transistor is in “saturation” or ‘ON state”. Thus active forward
state is characterized by VCE >> V sat

CE . The saturation state is characterized by
VCE = V sat

CE .

In this state IC is constant and independent of IB , VCE stays constant, ie.e., VCE =
V sat

CE , independent of IB , and VBE stays

A common saturation model uses 3 constant current sources with VBE = 0.8 Volts
and VCE = 0.2 Volts. Thus VCB = VCE − VBE = 0.2 − 0.8 = −0.6V = VC − VB .
Thus VB = VC + 0.6V . Note at saturation VBC = 0.6 > Vγ ≈ 0.5 and thus the BC
diode is actually forward biased.

Saturation can also be defined by VBC ≥ VBE . The saturation voltage can be found
analytical by finding the point for which VBE = VCE



7.7 Cutoff Mode

The “cutoff”, or “OFF” mode, is determined by the fact that both junctions are
revered biased.

At this point there is a very small collector leackage current, but it is so small that
it can be ignored. Both te base-emitter and base-collector are reverse biased.

7.8 Reverse Active

The amplificationfactor is usually less than the forward-active mode.

7.9 Breakdown

When VCE pases the breakdown voltage the forward-biased base-collector goes into
breakdown mode and Ic increases rapidily. Something akin happens when VCE is
too negative.

7.10 Collector Emitter Characteristic
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Figure 22: Left: Input characteristic curve for Common Emitter configuration:It
displays Base Current as a function of Base-Emitter Voltage. The Collector Emitter
voltage was fixed to 0.1. Right: Collector Emitter Characteristics for the 2N3904
(Based on Spice Model). Curves are for following base currents in mA: (0, 0.4, 0.8,
1.2, 1.6,2)

Is a collection of curves each ploting IC as a function of VCE for different values of
IB , for the base-emitter junction forward biased. Three regions can be observed:
Forward Active, Saturation and Breakdown.

• Forward Active: In this region IC changes little as a function of VCE , it
behaves as a current source. In the 2N2222 it is the region between 0.3 V
to 50V.

• Break-Down: IC inreases rapidely as a function of VCE due to the avalanche
effect. In the 2N2222 Break-Down starts for VCE > 50V .

• Saturation: The remaining region. It is characterized by the fact that the
collector current increases as a function of VCE . In 2N2222 covers VCE

between 0 and 0.3 Volts.



7.10.1 Example Circuit

Consider the circuit in Figure 23. As we decrease the resistance Rb the current Ib

will increase. While the transistor operates in the linear (active) region, then the
collector current Ic will increase proportionally to Ib, i.e., Ic = βIb. As Ic increases
VCE decreases due to the increase in voltage drop accross the resistor Rc:

10 = Vce + IcRc (261)

constant, typically at 0.6 Volts.

+10 V

b

c

e

Rc

Rb

Figure 23: Example Transistor Circuit

7.11 Example Circuit

Consider the circuit in Figure 24 where the two diodes and linked current sources
model an NPN transistor. First we put the diode equations:

IF = IES

(
e

VBE
vT − 1

)
(262)

IR = ICS

(
e

VBC
vT − 1

)
(263)

So far we have 2 equations and 4 unknowns: IF , IR, VBE , VBC . We now use energy
conservation from b to ground

VB = R2IB + VBE (264)

where by current conservation

IB = IE − IC = IF + IR − αF IF − αRIR (265)

Thus we get a third equation

VB = R2 (IF + IR − αF IF − αRIR) + VBE (266)

We can now use conservation of energy between collector and ground to get the 4th
constraint

VC = R1IC + VCB + VBE = R1 (αF IF − IR)− VBC + VBE (267)

In summary we have a system with 4 equations and 4 unknowns:



IF = IES

(
e

VBE
vT − 1

)
(268)

IR = ICS

(
e

VBC
vT − 1

)
(269)

VB = R2 (IF + IR − αF IF − αRIR) + VBE (270)
VC = R1 (αF IF − IR)− VBC + VBE (271)

Using the following standard transistor parameters IES = 50 × 10−9, ICS = 64 ×
10−9, αF = 0.96, αR = 0.75, vT = 0.026 and the following voltage and resistor values
VC = VB = 5, R1 = 220, R2 = 103 we get the following

R1

R2 αR ΙR
b

e

c

αF ΙF
VB

VC

IR

IF

Figure 24: Example Transistor circuit

7.12 Example Circuit

Consider the circuit in Figure 28. When the switch is open Ib = 0 and thus Ic = 0.
When the circuit is closed we have VBE = 0.6 thus

Irb =
10− 0.6

1000
= 9.4mA (272)

If the transistor were in linear state and assuming a typical β = 100 then Ic would
be 940 mA. The internal resistance of the lamp is 10/0.1 = 100 Ohms. A current of
940 mA would require a voltage drop of 0.940×100 = 94 Volts, which is beyond the
10 Volts supplied by the power source. Thus the transistor must be in saturation
state. Assuming a typical V sat

CE = 0.1 V, then the current though the lamp is
(10 − 0.1)/100 = 0.099. The power dissipated by the resistor is the voltage drop
times the current throough the resistor, i.e., 9.4× 0.0094 = 88.36 mWatts. This is
within the 1/4 Watts disipation specification of typical resistors.

7.13 Example Circuit: Simple Amplifier, Base Biasing

Plot Vo as a function of Vi. Do we get a logistic?
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Figure 25: Example Transistor circuit
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Figure 26: Base Biasing

Consider the circuit in Figure 26. Let the average value of Vi be zero (the capacitor
in series removes the DC component if not zero). Assuming we operata in the
active forward state then as Vb increases IC increases and thus Vo decreases. As Vi

decreases Ic decreases and Vo increases. However note if R1 = 0 then making Vi

negative will have no effect on Vo for we enter into the transistors cut-off state. To
maximize the range of Vo we want that

VO = VCE =
1
2
VC (273)

when Vi = 0. When in active forward state we have

VC = VCE + R2IC (274)
2VCE = VCE + R2βIB (275)

Thus

R2 =
VCE

βIB
(276)

and since

IB =
VC − 0.7

R1
(277)

Then

R2 = R1
VCE

β(VC − 0.7)
(278)



For the base resistor we have

VC = VBE + R1IB (279)

Thus
R1 =

2VCE − VBE

IB
(280)

Standard values for VCE in active mode range in the [1, 10] Volt interval. Thus we
want VC = 10 and VCE = 5 when Vi = 0. Taking the parameters from the 2N2222
β = 100, VBE = 0.7 V. Looking at the Collector Emitter Curve we see a middle
range value for IB is 100 µA

Thus

VC = 10 (281)

R2 =
5

(100)(10−4)
= 500Ω (282)

R1 =
10− 0.7

10−4
= 93KΩ (283)

While this Analysis is instructive note that the circuit is not very useful for it is
highly dependent on a fixed value of β which we know is not a reliable transistor
parameter.

7.14 Example Transistor Circuit

Consider the circuit in Figure 27 left. Appendix A, shows the circuit’s specification
in SPICE code. Figure 27 center shows the voltage at various points in the circuit
as a function of time. The right side of the figure shows current as a function of
time.

8 The Flip-Flop

8.1 Types of Multi-Vibrators (Flips flops)

• Astable: Continuously changes states (2 unstable states)
• Monostable: One stable state and one unstable state. When a pulse comes

the system moves into the unstable state and after a period of time it moves
back into the stable state.

• Bistable: Two stable states. When a pulse arrives it changes into another
state and remains there until a new pulse arrives.

8.2 State Dynamics

Figure ?? displays a prototypical astable multivabritor (flip-flop) circuit. Figure 29
displays a reinterpretation of the circuit as two mutually connected units. Each
unit contains a transistor, a capacitor and 2 resistors.

We will approximate the transistor as a switch that can be into “on”, i.e. closed
circuit, and “off”, i.e., open circuit, states. Jointly there are 4 possible transistor
states (−1,−1), (1, 1), (1,−1), (−1, 1).
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Figure 27: Example Transistor circuit. The caption V 4 refers to the alternating
voltage source. Ic should say Ic/100

• S = (1,−1): Figure ?? displays an equivalent circuit for the flip-flop with
transistor 1 ON state and transistor 2 OFF. Surrounding the circuit are
several state variables starting at state S(−1, 1), instantly switching to
state (1,−1) and then switching back to (1,−1).

First observe the current through Base1. It is the sum of the current
through R21 and the current trhough R12. The reason it does not appear
to be so at the beginning of the graph is because at that very moment the
second transistor was not in “OFF” state. Note the current through R21

decreases exponentially early on due to the charging of C1 from 1.9 to an
assymptote of 2.7 volts.

The current through Base1 controls the current through Col1. For simplic-
ity we will use a constant β, model, with the current through Col1 being
approximately 120 times larger than the current thorugh Base1. Finally we
investigate how the current trhough Col1, which acts as a current source,
divides up. Let VB1 , IB1 the voltage at and current through the base of
transistor . Let I1 the current through R11, I − 2 the current through R22,
and VC2 the voltage accross C2.

R11I1(t) = R22I2(t)− VC2(t) (284)
IB1(t) = I1(t) + I2(t) (285)
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Figure 28: Left: Astable Flip-Flop. Center: Monostable Flip-Flop. Right:
Bistable Flip-Flop. It has to states (On, or Set, and Off, or Reset). It keeps
the state until an external change signal happens.
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Figure 29: Left: Electronic Neuron (Javier). Right: Neural Network Interpreation
of a Flip-Flop circuit.

Thus xs

I1(t) =
R22IB1(t)− VC2(t)

R11 + R22
(286)

I2(t) =
R11IB1(t) + VC2(t)

R11 + R22
(287)

VB1 = 3−R11
R22IB1(t) + VC2(t)

R11 + R22
(288)

Note I1 ≈ IB1(t) and the voltage at B2 slowly increases as C2 discharges
(note the sign convention for C2). Now take a look at Figure 30. As the
voltage at base 2 approximates 0.5 Volts, the condunctance throug collector
2 increases rapidily. As the condunctance through collector 2 increases, the
current through the base decreases, since the collector 2/ emitter 2 circuit is
in parallel with the base 1 /collector 1 line. By equation 288 As the current
through 288 decreases, by equation (288), the voltage at the base increases,
thus increasing the conductance through Collector 2. This positive feedback
loop results on a very rapid increament increment of conductace through the
collector, i.e. transistor 2 turns ON and rapid decrease of current through
base 1, ie. transistor 1 turns OFF.

• S = (−1,−1): In this case the potential at the base of both neurons is 3
Volts. VB1 = VB2 = 3 Volts. All else equal the charge of the capacitors
will have an effect on which transistor will turn on first. If VCi > VCj then
unit j will turn on first. If VCi = VCj slight differences in the make of the
neurons’ components will determine which one turns on first.

Figure
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Figure 30: Collector current as a function of base-emitter voltage for a fixed
collector-emitter voltage of 10 Volts

9 Domestic Electricity

9.1 Sinusoid current fundamentals

sin(a + b) = sin a cos b + cos a sin b (289)
cos(a + b) = cos a cos b− sin a sin b (290)

1 = cos2 x + sin2 b (291)
(292)

From this it follows: ∫ 2π

0

cos2 xdx =
∫ 2π

0

sin2 xdx = π (293)∫ 2pi

0

sinx cos xdx = 0 (294)

sin(x + θ) = cos θ sinx + sin θ cos x (295)

We can think of sinx and cos x as orthogonal basis for sinusoids of arbitrary phase.

9.2 RMS voltage

Let

s(x) = a sin(x + θ) (296)

Vrms =

√
1
2π

∫ 2π

0

s(x)dx =
a√
2

(297)



an AC current with Vrms = k produce the same power as a DC with Voltage V.

In the US, Vrms = 120 Volts → Peak voltage is 120*
√

2 = 169.7 volts

Power plant produces 3 sinusoids with phase difference of 120 degrees. This 3 lines
+ groound line are transported for no more than 300 miles uninterrupted at order
100KVolts. This is transformed down to 7200Volts for transport in residential areas.
Each residence grabs 1 line and ground. It converts into 2 lines out of phase by 180
degrees and ground. Voltage difference between each hot line and grounds is 120
volts rms.

Let
s(x) = sin(x + θ1)− sin(x + θ2) (298)

Then

V 2
rms(s) =

1
2π

(∫ 2π

0

s(x)dx

)2

= (299)

1
2
[(cos θ2 − cos θ1)2 + (sin θ2 − sin θ2)2] (300)

= 1 + cos(θ2 − θ1) (301)

In case of θ = 120 → cos(120) = 0.5 = 3/2 → Vrms(s) =
√

3/2 and

V rms(s)
V rms single phase

=
√

3 (302)

Connecting between two lines out of phase 120 degrees provides sqrt 3 of the single
phase voltage → 208 Volts in the US

Connecting between two lines out of phase 180 degrees provides 2 times single phase
voltage → 240 Volts in US

Earth is a relatively good conduntors: average resistance about 100 ohms. For dry
earth about 1000 ohms, for rock about 107 Ohms.

The resistance to earth of a ground electrode: Let V potential difference between
earth and another point. We stick an electrode on earth and measure the current →
it gives us the resistance to earth of that electrode. In general the deeper, and wider
the less resistance. Multiple rods in series also help. This is important for lighting
protection. Good resistance is less than 10 ohms. Less than 1 ohm is possible.

10 Appendices

10.1 I: SPICE Code

10.2 Circuit Displayed in Figure 27

Spice Code Transistor Circuit

vin1 1 0 DC 4.77
rc 1 2 100
vc 2 3 dc 0
vin2 4 0 AC SIN(0 4.21 1 1MS 0)
rb 4 5 1K
vb 5 6 dc 0



q1 3 6 7 Q2N2222A

*2N2222A
*Si 500mW 40V 800mA 300MHz pkg:TO-18 3,2,1
.MODEL Q2N2222A NPN(IS=8.11E-14 BF=205 VAF=113 IKF=0.5 ISE=1.06E-11
+ NE=2 BR=4 VAR=24 IKR=0.225 RB=1.37 RE=0.343 RC=0.137 CJE=2.95E-11
+ TF=3.97E-10 CJC=1.52E-11 TR=8.5E-8 XTB=1.5 )

ve 7 8 dc 0

diod1 8 9 diodemod
.model diodemod d n=2
vd 9 10 dc 0
re 10 0 100

10.3 II: Xcircuit

The diagrams in this document have been made with XCircuit. Here are some tips

• click on library icon on right side bar. Click on desired symbol. To select
item click and hold until yellow To draw lines simply click. To end drawing
line ”option click”. To erase last step ”command click”.

• To write file: File -¿ Write X circuit PS: It produces a postscript file that
can be open and edited using xcircuit.

• To select group: ”option click”

• To draw a connecting dot press the dot in the keyboard

• To write stuff: text -¿ make labels. You can then use text-¿ style to do
subscript or text -¿ font for greek symbols

10.4 III: Operating Parameters of PN222A Switching transistor

• Collector Emitter Breakdown Voltage: 40 V

• Collector Base Breakldown Voltage: 75 V

• Emitter-Base Breakdown Voltage: 6 V

• Collector Breakdown current: 1 A

• Collector Cutoff Current: 10 nA

• Emitter Cutoff current 10 µ A

• Base Cutoff current 20 µ A

• hF E: 35 to 300

• V sat
CE : 0.3 to 1.0 V

• V sat
BE : 0.6 to 2.0 V

• Power Dissipation: 0.625 Watts. IcVCE must be less than PDmax

10.5 III: Operating Parameters of 2N3904 Switching transistor

• Collector Emitter Breakdown Voltage: 40 V

• Emitter-Base Breakdown Voltage: 6 V

• Collector Breakdown current: 200 mA



E B C E B C E B C E B C
- + + - + - - +

0.7 V Open Loop 0.7 V Open Loop

Table 6: Testing a Transistor using Diode Function of Digital Meter. First row:
Emitter, Base, Collector. Second Row: Location of the Positive and Negative leads
of meter. Third row: Expected Result.

• Max Power Dissipation: 500 mW
• Collector Cutoff Current: < 50 nA
• Emitter Cutoff current < 50 µ A
• hF E: 30 to 300.

Ic min hFE max hFE

0.1m A 60 -
1m A 80 -
1m A 80 300
50m A 60 -
100m A 30 -

• V sat
CE : ≤ 1.6 V. Spice uses 0.07 V for model of this transistor.

• V sat
BE : ≤ 0.95 V. Spice uses 0.7 V for model of this transitor.

• Max Power Dissipation: 500 mW

10.6 IV: Testing Transistor Multimiter Diode Test

When set to diode test function the meter provides enought voltage to forward bias
and reverse bias a transistor. A good transistor shall respond as in Table ??

10.7 V: Vocabulary

• Voltage Source: Delivers constant voltage regardless of load. Quite remark-
able but very common in nature.

• Current Source: Delivers constant current regardless of load. Much harder
to find in nature. The simplest current source approximation is a large
voltage source followed by a large resistance. Collector-Emmitter in tran-
sistor can be seen as a current source. For a given base current it delivers
constant current between collector and emitter regardless of the voltage
drop between collector and emitter.
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Figure 32: First Row Parameters: R1Inhibit2 100 Ohms, R1Desinhibit1 50K,
C1 10u IC=0.001V, R2Inhibit1 100 Ohms, R2Deshinhibit2 50K, C2 10u IC=0.0V.
Second Row Parameters: R1Inhibit2 50 Ohms, R1Desinhibit1 5K, C1 100u
IC=0.001V, Q1 Q2N3904, R2Inhibit1 50 Ohms, R2Deshinhibit2 5K, C2 100u
IC=0.0V, Third Row Parameters: R1Inhibit2 200 Ohms, R1Desinhibit1 10K,
C1 20u IC=0.001V, Q1 0 Q2N3904, R2Inhibit1 1K, R2Deshinhibit2 10K, C2 20u
IC=0.0V,


