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Abstract

Automatic Real-Time Facial Expression Recognition for Signed Language Translation

Jacob Richard Whitehill
M.Sc. thesis, Department of Computer Science, University of the Western Cape

We investigated two computer vision techniques designed to increase both the recognition accuracy
and computational efficiency of automatic facial expression recognition. In particular, we compared a local
segmentation of the face around the mouth, eyes, and brows to a global segmentation of the whole face. Our
results indicated that, surprisingly, classifying features from the whole face yields greater accuracy despite
the additional noise that the global data may contain. We attribute this in part to correlation effects within
the Cohn-Kanade database. We also developed a system for detecting FACS action units based on Haar
features and the Adaboost boosting algorithm. This method achieves equally high recognition accuracy for
certain AUs but operates two orders of magnitude more quickly than the Gabor+SVM approach. Finally,
we developed a software prototype of a real-time, automatic signed language recognition system using
FACS as an intermediary framework.
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Chapter 1

Introduction

In human-to-human dialogue, the articulation and perception of facial expressions form a communication

channel that is supplementary to voice and that carries crucial information about the mental, emotional,

and even physical states of the conversation partners. In their simplest form, facial expressions can indicate

whether a person is happy or angry. More subtly, expressions can provide either conscious or subconscious

feedback from listener to speaker to indicate understanding of, empathy for, or even skepticism toward

what the speaker is saying. Recent research has shown that certain facial expressions may also reveal

whether an interrogated subject is attempting to deceive her interviewer [Ekm01].

One of the lesser known uses of facial expression in human interaction is signed communication, i.e.,

“sign language.” In signed languages, facial expressions are used to denote the basic emotions such as

“happy” and “sad”. Even more importantly, however, they also provide lexical, adverbial, and syntactic

information. In some instances, a signer may use a facial expression to strengthen or emphasize an adverb

which is also gestured through the hands. In others, the facial expression may serve to differentiate two

nouns from each other. Any computer system designed to recognize a signed language must thus be able

to recognize the facial expressions both accurately and efficiently.

Throughout the world, but especially in developing countries such as South Africa, deaf people face

severely limited educational and occupational opportunities relative to a hearing person. The existence of

a computer system that could automatically translate from a signed language to a spoken language and

vice-versa would be of great benefit to the deaf community and could help to alleviate this inequality. In

the South African Sign Language Project at the University at the Western Cape, of which this research is a

part, we envision the development of a small, unobtrusive, hand-held computing device that will facilitate

the translation between signed and spoken languages. This computer system will need to recognize both

hand gestures and facial expressions simultaneously; it must then analyze these two channels linguistically

to determine the intended meaning; and it will need to output the same content in the target language.
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All three stages must operate in real-time. In this thesis are interested in the facial expression recognition

aspects of this translation device. We believe that the Facial Action Coding System (FACS, by Ekman and

Friesen[EF78]), a well-known framework which objectively describes human facial expressions in terms of

facial “action units”, will serve as a useful intermediary representation for SASL expression recognition. In

the section below, we describe our particular thesis goals.

1.1 Thesis Objectives

The goals of this thesis are two-fold:

• First, we wish to construct an automatic FACS action unit recognition system that supports the au-

tomated recognition and translation of South African Sign Language (SASL). Automatic FACS action

unit recognition is useful in its own right and has numerous applications in psychological research

and human-computer interaction.

• Second, using the action unit recognition system that we build, we will construct a software prototype

for the recognition of facial expressions that occur frequently in SASL and evaluate this prototype on

real SASL video.

Automatic facial expression recognition (FER) takes place during three phases: (1) image preprocessing,

face localization and segmentation; (2) feature extraction; and (3) expression classification. This thesis

investigates techniques across all three stages with the goal of increasing both accuracy and speed. In our

first main experiment, we investigate the effect of local segmentation around facial features (e.g., mouth,

eyes, and brows) on recognition accuracy. In our second experiment, we assess the suitability of using Haar

features combined with the Adaboost boosting algorithm for FACS action unit recognition. We conduct

both experiments using the Cohn-Kanade database [KClT00] as our dataset, and using the area under the

Receiver Operator Characteristics (ROC) curve, also know as the A′ statistic, as the metric of accuracy. For

statistical significance, we use matched-pairs, two-tailed t-tests across ten cross-validation folds.

1.2 Outline

The rest of this thesis is constructed as follows: in Chapter 2 we describe the Facial Action Coding System

and motivate our decision to use this framework. In Chapter 3 we conduct a wide-ranging survey of

historical and contemporary FER systems in order to discover which techniques and algorithms already

exist. We place particular emphasis on the feature types that each surveyed FER system uses. Chapter 4

provides a derivation of the support vector machine (SVM) due to its importance in the FER literature. In

Chapter 5 we assess whether local analysis of the face around particular features such as the mouth and

3



eyes can improve recognition accuracy as well as increase run-time performance. We use support vector

machines and Gabor features for this study. The results of this experiment underline the importance of

establishing a large, publicly available facial expression database in which individual facial actions occur

independently of others. Later in Chapter 5 we depart from the Gabor+SVM approach in order to test a new

method of detecting FACS AUs: Haar wavelet-like features classified by an Adaboost strong classifier. Our

results show that this new technique achieves the same recognition accuracy for certain AUs but operates

two orders of magnitude more quickly than the Gabor+SVM method.

In Chapter 6 we use FACS as an intermediary expression coding framework and apply the FER system

developed in Chapter 5 to our target application domain of SASL recognition. While the actual recognition

results of this pilot study are unsatisfactory, we believe that the system architecture as well as the particular

problems we encountered will be useful when designing future such systems. Finally, Chapter 7 suggests

directions for future research.

With regards to the pilot project on signed language recognition we make one disclaimer: This thesis

does not constitute linguistic research on South African Sign Language or signed communication in general.

The purpose of this pilot application is to assess whether a simple object recognition architecture can sup-

port viable automatic signed language recognition, and to discover the most pressing problems that need to

be solved in support of this goal. By implementing a software prototype of a SASL expression recognizer,

we also provide future researchers of the South African Sign Language Project a firm starting point from

which to conduct further research.
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Chapter 2

Facial Action Coding System

In this thesis we use the Facial Action Coding System (FACS) [EF78] as an intermediary framework for

recognizing the facial expressions of South African Sign Language (SASL). Two other research groups also

use a FACS-based approach for their signed language recognition systems: the group of Professors Ronnie

Wilbur and Aleix Martinez at Purdue University [Wil], and Ulrich Canzler [Can02] at the RWTH-Aachen.

In order to motivate our own decision to use FACS, we must first describe the purpose and design of FACS

and compare it to other representations that describe human facial expression. Later in this chapter we

discuss the advantages and disadvantages of using FACS for our end-goal of automated SASL recognition.

2.1 Purpose of FACS

The primary goal of FACS was “to develop a comprehensive system which could distinguish all possible

visually distinguishable facial movements” ([EFH02], p. 2). In contrast to other systems for facial expression

coding, the development of FACS was governed by “the need to separate inference from description.” In

other words, the investigation of which emotion caused a particular facial expression should be determined

independently from the description of the facial expression itself.

FACS is based on an eight-year, highly-detailed anatomical study of the muscles which control the face.

It was designed to measure every visible movement of the face due to the contraction of facial muscles.

In contrast to certain intrusive methods such as electromyography, in which wires must be connected to

subjects’ faces, FACS was designed for use on humans who are perhaps unaware of the fact they are being

studied; coding of facial expression is therefore performed using only visual measurements. For this rea-

son, FACS is not intended to measure muscle movements which result in no appearance change or whose

effect on the face is too subtle for reliable human perception. FACS also does not register changes in facial

appearance due to factors unrelated to muscles, e.g., blushing or sweating [EFH02].
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2.2 The Design of FACS

FACS’ approach is to specify the minimal units of facial behavior. These units are known as action units

(AUs). Some AUs have a one-to-one correspondence with a particular facial muscle. AU 13, for example,

corresponds solely to the caninus muscle. Other AUs may be generated by any one of a set of face muscles

whose effects on the face are indistinguishable from each other. In yet other cases, multiple AUs may be

linked to the same muscle if different parts of that muscle can be activated independently. Both AUs 7 and

8, for example, pertain to orbicularis oris [EFH02].

Each AU is assigned a number to facilitate coding of faces. In the original FACS definition in 1978 [EF78],

there were 44 AUs whose numbers ranged from 1 through 46 (numbers 3 and 40 are not used). The updated

2002 edition [EFH02], which incorporated movements of the eyeball and head, contains an additional 12

AUs numbered 51 and higher. In both editions, AUs 1 through 7 pertain to the upper-face actions whereas

AUs numbered 8 through 46 relate to the lower face.

For each AU in FACS, the FACS Manual [EFH02] provides the following information:

• The muscular basis for the AU, both in words and in illustrations.

• A detailed description of facial appearance changes supplemented by photographs and film exam-

ples.

• Instructions on how to perform the AU on one’s own face.

• Criteria to assess the intensity of the AU.

2.2.1 AU Combinations

As AUs represent the “atoms” of facial expressions, multiple AUs often occur simultaneously. Over 7000

such combinations have been observed [Ekm82]. Most such combinations are additive, meaning that the

appearance of each AU in the combination is identical to its appearance when it occurs alone. Some combi-

nations, however, are distinctive (sometimes also called non-additive) - in such cases, some evidence of each

AU is present, but new appearance changes due to the joint presence of the AUs arise as well. In the FACS

Manual, the distinctive AUs are described in the same detail as the individual AUs.

Further relationships among multiple AUs exist as well. For instance, in certain AU combinations,

the dominant AU may completely mask the presence of another, subordinate action unit. For certain such

combinations, special rules have been added to FACS so that the subordinate AU is not scored at all.1

Another relationship among AUs is that of substitutive combinations. In these cases, one particular AU

1Most such rules were removed in 1992 after it had been determined that they they were mostly confusing.
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combination cannot be distinguished from another, and it is up to the FACS coder to decide which is more

appropriate.

2.2.2 AU Intensity

In addition to determining which AUs are contained within the face, the intensity of each AU present must

also be ascertained. Intensity is rated on a scale from A (least intense) through E (most intense). Criteria for

each intensity level are given in the FACS Manual for each AU.

2.3 Suitability of FACS for Sign Language Recognition

In this project we chose FACS as our intermediary framework for facial expression recognition because of

the level of detail it provides in describing expressions; because of its ability to code expression intensity;

and because FACS is a standard in the psychology community. As we will describe in Chapter 6, we

conducted a preliminary FACS analysis of 22 facial expressions that occur within SASL and determined

that no pair of facial expressions contained exactly the same set of AUs. Although this study will have to

be extended over more subjects and more expressions, it does support our belief that FACS is sufficiently

detailed to enable sign language recognition.

2.4 Alternative Systems for Facial Expression Description

We are aware of only a few other systems designed to describe facial expressions in detail. One such system

is the Maximally Discriminative Facial Movement Coding System (MAX), which was developed by C.E. Izard

in 1979 [Iza79] and later updated in 1995. MAX was developed for psychological research on infants and

small children, though with modification it can also be applied to persons of other age groups. Face anal-

ysis under MAX is performed using slow-motion video and proceeds in two stages. In the first stage, the

face is divided into three regions: (1) the brows, forehead, and nasal root; (2) the eyes, nose, and cheeks; and

(3) the lips and mouth. Each region is then analyzed independently for the occurrence of facial movements

known as appearance changes (ACs). In the second stage, the ACs in each face region are classified either as

one of eight distinct emotional states (interest, joy, surprise, sadness, anger, disgust, contempt, and fear),

or as a complex expression comprising multiple simultaneous affects [Iza79]. Like FACS AUs, the MAX

ACs are rooted anatomically in the muscles of the face. Unlike AUs, however, the set of ACs is not compre-

hensive of the full range of visually distinct human facial movement, nor does it distinguish among certain

anatomically distinct movements (e.g., inner- and outer-brow movement) [OHN92]. MAX is therefore less

appealing for signed language translation than FACS.
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Another approach is the Moving Pictures Expert Group Synthetic/Natural Hybrid Coding (MPEG-4

SNHC) [Mov] standard. MPEG-4 SNHC uses 68 facial animation parameters (FAPs) to describe movements

of the face. The purpose of MPEG-4 SNHC, however, is to animate computer-generated graphics, not to

recognize the expression on an actual human’s face. Correspondingly, the set of FAPs is not comprehensive

of all visible human face movement, nor do the individual FAPs correspond to the actual muscle groups of

the human face. As with MAX, it is unlikely to be of use in sign language recognition.

2.5 Why Use FACS for SASL?

In this thesis we endeavor to build an automated system for the recognition of SASL facial expressions by

first determining the set of AUs present in a particular face image, and then mapping these AUs to a par-

ticular SASL expression. While we have already explained the advantages of FACS over other expression

recognition frameworks, we have not yet motivated why we need an intermediary framework at all.

Using an intermediary expression description framework does add an additional layer of complexity to

a translation system that recognizes SASL expressions directly from the input images. However, the advan-

tage of using a framework for expression description such as FACS is that linguistic research on SASL and

machine learning research on expression recognition can be de-coupled. For example, if a new expression

is discovered in SASL, it can be accommodated simply by adding an additional AU-to-expression mapping

to the translation system. The AU recognition code, on the other hand, remains completely unchanged.

In systems that are trained on individual SASL expression directly, on the other hand, a whole new set of

training examples containing this newly-found expression must be collected, and a new classifier must be

trained - this requires significant time and effort. We thus believe that the use of an intermediary frame-

work, especially FACS, is a worthwhile component of our system design.

2.6 Summary

We have described the purpose and basic architecture of FACS, including its set of action units and intensity

ratings. We have explained some of the advantages of FACS over other expression coding systems for the

task of signed language translation. Finally, we justified our use of an intermediary framework such as

FACS in our SASL expression recognition system.
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Chapter 3

Literature Review

Automatic facial expression recognition (FER) is a sub-area of face analysis research that is based heavily on

methods of computer vision, machine learning, and image processing. Many efforts either to create novel

or to improve existing FER systems are thus inspired by advances in these related fields.

Before describing our own contributions to the field of automatic FER, we first review the existing lit-

erature on this subject. This survey includes the major algorithms that have significantly impacted the

development of FER systems. We also describe more obscure algorithms of FER both for the sake of com-

prehensiveness, and to highlight the subtle benefits achieved by these techniques that may not be offered

by more mainstream methods. In accordance with the experiments we perform in Chapter 5, we place

particular emphasis in our survey on the role of feature type, and on the effect of local versus global face

segmentation on classification performance.

3.1 Comparing the Accuracy of FER Systems

Objectively comparing the recognition accuracy of one FER system to another is problematic. Some systems

recognize prototypical expressions, whereas others output sets of FACS AUs. The databases on which FER

systems are tested vary widely in number of images; image quality and resolution; lighting conditions; and

in ethnicity, age, and gender of subjects. Most databases include subjects directly facing the camera under

artificial laboratory conditions; a few (e.g., [KQP03]) represent more natural data sets in which head posture

can vary freely. Given such vastly different test datasets used in the literature, only very crude comparisons

in accuracy between different FER systems are possible. However, for the sake of completeness, we do

quote the reported accuracy of the systems we reviewed.

The most common metric of recognition accuracy used in the literature is the percentage of images

classified correctly. An accuracy of 85% would thus mean that, in 85 out of 100 images (on average), the
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expression was predicted correctly, and in 15 images it was not. This metric is natural for characterizing a

face as belonging to one of a fixed set of k emotions. For FACS AU recognition, however, this metric can

be highly misleading: some expressions occur so rarely in certain datasets that a classifier could trivially

always output 0 (“absent”) for the expression and still score high accuracy. In such a system, even though

the hit rate (% of positively labelled images classified correctly) would be low (0%), the percentage of

images correctly classifier would still be high. A more sophisticated measure of recognition accuracy is the

area under the ROC curve, also called the A′ statistic, which takes into account both the true positive and

false positive rates of a classifier. We use the A′ metric in our own experimental work in Chapter 5. Most

previous literature on FER presents results only as percent-correct, however, and in this literature review

we are thus constrained to do the same.

3.2 Local versus Global Segmentation

The first issue we investigate, both in this survey and in Chapter 5, is whether analyzing a local subregion of

the face around particular facial muscles can yield a higher recognition accuracy of certain FACS AUs than

analyzing the face as a whole. Little research has been conducted on this issue for prototypical expressions,

and no study, to our knowledge, has assessed the comparative performance for FACS AUs. Results for

prototypical expressions are mixed:

Lisetti and Rumelhart developed neural networks to classify faces as either smiling or neutral [LR98].

They compared two networks: one which was trained and tested on the whole face, and one which was

applied only to the lower half of the face (containing the mouth). For their application, local analysis of the

lower face-half outperformed the global, whole-face analysis.

Padgett and Cottrell compared global to local face analysis for the recognition of six prototypical emo-

tions. In particular, they compared principle component analysis (PCA) on the whole face (eigenfaces) to

PCA on localized windows around the eyes and mouth (eigenfeatures). The projections onto the eigenvec-

tors from each analysis were submitted to neural networks for expression classification. As in Lisetti and

Rumelhart’s study, the localized recognition clearly outperformed global recognition. Padgett and Cottrell

attribute these results both to an increased signal-to-noise ratio and to quicker network generalization due

to fewer input parameters [PC97].

However, Littlewort, et al [LFBM02] compared whole-face, upper-half, and lower-half face segmen-

tations for the recognition of prototypical facial expressions. They classified Gabor responses (described

later in this chapter) using support vector machines. In contrast to the other literature on this subject, their

whole-face segmentation clearly outperformed the other two segmentation strategies by several percentage

points [LFBM02].
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From the literature, there seems to be no definite answer as to which segmentation - local or global -

yields higher accuracy. As we shall show in Chapter 5, the issue depends on the particular facial expression

database on which the system is tested. It may also depend on the particular feature type that is used. In the

rest of this chapter, we describe the many kinds of features that have been deployed for FER as well as the

systems that deploy them.

3.3 Feature Extraction for FER: The Two Approaches

Research on automatic FER can largely be divided into two categories: appearance-based and geometry-based

methods. The former uses color information about the image pixels of the face to infer the facial expression,

whereas the latter analyzes the geometric relationship between certain key points (fiducial points) on the

face when making its decision. We describe geometry-based methods in Section 3.4 and appearance-based

methods in Section 3.5.

3.4 Geometry-based Features

Many modern FER systems use the geometric positions of certain key facial points as well as these points’

relative positions to each other as the input feature vector. We refer to such FER systems as geometry-

based systems. The key facial points whose positions are localized are known as fiducial points of the face.

Typically, these face locations are located along the eyes, eyebrows, and mouth; however, some FER systems

use dozens of fiducial points distributed over the entire face.

The motivation for employing a geometry-based method is that facial expressions affect the relative

position and size of various facial features, and that, by measuring the movement of certain facial points,

the underlying facial expression can be determined. In order for geometric methods to be effective, the

locations of these fiducial points must be determined precisely; in real-time systems, they must also be

found quickly. Various methods exist which can locate the face and its parts, including optic flow, elastic

graph matching, and Active Appearance Models ([CET98]). Some FER systems (e.g., [TKC01]) require

manual localization of the facial features for the first frame in a video sequence; thereafter, these points can

be tracked automatically. Other approaches to fiducial point location do not actually track the points at all,

but instead re-locate them in each frame of the video sequence.

The exact type of feature vector that is extracted in a geometry-based FER systems depends on: (1)

which points on the face are tracked; (2) whether 2-D or 3-D locations are used; and (3) the method of

converting a set of feature positions into the final feature vector. The first question (1) has no definitive

best answer, but it is influenced by several factors, including (a) how precisely each chosen fiducial point

can be tracked; and (b) how sensitive is the position of a particular fiducial point to the activation of the
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classified facial expression. The advantage of 3-D fiducial point tracking is that the resulting FER systems

are arguably more robust to out-of-plane head rotation than are 2-D systems. The disadvantage is that these

3-D locations must usually be re-constructed from 2-dimensional camera data; the algorithms used to track

fiducial points are thus more complex and slower. Only a few FER systems (e.g., [GTGB02] and [EP97]) use

3-D coordinates.

In terms of feature extraction, the most distinguishing factor in the design of geometry-based FER sys-

tem is how the set of facial location vectors is converted into features. The simplest kind of feature vector in

such systems contains either the relative positions of different facial landmarks (e.g., distance between left

and right eyes) or the (x, y) displacements of the same feature points between frames in a video sequence.

In the former case, relative positions are often normalized by the face size to improve generalization per-

formance across different human subjects. In the following subsections we review geometry-based FER

systems based on their method of converting raw position vectors into features.

3.4.1 Locations and Relative Distances

The simplest type of geometry-based feature vector is constructed from the locations and relative distances

between feature points. One such system using this approach was developed by Sako and Smith [SS96]. It

used color histograms to track the head and mouth, and template matching to track the eyes and brows.

Their system computes the width and height of the mouth and face as well as the distance between the eyes

and eyebrows as a feature vector. Using the nearest neighbor classifier, their FER system classifies the face

as one of five prototypical facial expressions. It operates in real time and achieves 71% accuracy [SS96] on

a test set containing only one test subject.

Wang, Iwai, and Yachida [WIY98] use labeled graph matching to track the positions of 12 fiducial points.

The (x, y) displacements of the points between adjacent video frames are collected into a feature vector.

Each of the three classified prototypical expressions is modeled as a collection of 12 B-spline curves (one

for each fiducial point) describing the movements of the fiducial points through time. By tracking the

(x, y) displacement of all fiducial points of the test subject in each video frame, the facial expression can

be classified by selecting the collection of B-spline whose combined Euclidean distance from the test data

is minimized. Their system also estimates the degree of facial expression. On a test database of 29 image

sequences recorded from four test subjects, their system achieves 100%, 100%, and 83.7% accuracy, respec-

tively, on the prototypical expressions happiness, surprise, and anger [WIY98].

Lien, et al [LKCL98] employ optical flow to track 3 fiducial points each around the left and right eye-

brows. The x and y displacements of these six points are computed relative to the neutral video frame to

form the feature vector. HMMs are then used to classify one of three possible AU-based expressions of the

eyebrows. On a test database of 260 image sequences from 60 subjects, their system achieved 85% accuracy
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[LKCL98].

Cohn, et al [CZLK99] use optical flow to track 37 fiducial points in the upper and lower face, and then

apply discriminate function analyzes to classify the x and y displacement of each fiducial point into FACS

AUs. Their system achieves 91%, 88%, and 81% accuracy on the brow, eye, and mouth AUs, respectively

[CZLK99].

Finally, the FER system of Bourel, et al [BCL02] measures the distances between facial landmarks for

its feature extraction and compares them to the corresponding values in previous frames. Their approach

transforms the distances into one of three possible states: Increasing, Decreasing, or Stationary. Using the k-

nearest neighbors algorithm for expression classification, they show that their state-based approach is more

robust to noisy data and partial occlusion of the face than non-discretized approaches. Overall accuracy is

around 90% for 6 prototypical emotions [BCL02].1

3.4.2 Parameter Estimation

In several geometry-based FER systems, fiducial point locations and distances do not constitute the features

directly, but rather are used first to estimate the parameters of some model. These parameters are then fed

to a classifier for expression prediction. One such FER system was developed by Black and Yacoob [BY95]:

their approach uses a perspective projection model to convert the location vectors of facial landmarks into

model parameters of image motion. These low-level model parameters are then further transformed into

mid-level “predicates” which describe the movement of facial muscles in such terms as “mouth rightward”.

Finally, these predicates are classified as a facial expression using a manually created rule-set. The onset of

an “anger” expression, for example, is defined as a simultaneous “inward lowering of brows and mouth

contraction.” On a database of 70 image sequences from 40 subjects, their system achieves an average of

92% recognition accuracy on 7 prototypical expressions [BY95].

Tian, Kanade, and Cohn [TKC01] use multi-state models of the head and face (one state for each head

pose) as well as optical flow to track the locations of the eyes, brows, and cheeks. These location vectors

are converted into sets of 15 upper-face and 9 lower-face parameters based on the relative distance between

certain points. For instance, one such parameter describes the height of the eye and combines distance

information from three fiducial points on the face from both the current and the initial video frames. Using

a neural network, their system classifies 7 upper-face AUs and 11 lower-face AUs with 95% and 96.7%

accuracy, respectively [TKC01].

In Cohen, et al [CSC+03], fiducial points all over the face are tracked using template matching. The

locations of these points are fit onto a 3-D mesh model and then transformed into a set of Bezier-volume

control parameters. These parameters represent the magnitudes of pre-defined facial motions. The Bezier

1No numerical results were given in the paper; we estimated 90% based on their graph.
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parameters are then discretized into bins before being classified as a prototypical expression. Best results

in this FER system are achieved using the Tree-Augmented Naive (TAN) Bayes classifier with an average

recognition rate of 65.1% [CSC+03].

3.4.3 Models of Face Musculature

One particular form of geometric model with a clear biological justification is to use fiducial point move-

ment to estimate activation of the underlying face muscles. Mase was, to our knowledge, the first researcher

to propose such a scheme for FER ([Mas91]), but according to his paper he did not actually implement this

strategy. Essa and Pentland [EP97] did implement a complete FER system using this approach. They use

optical flow analysis to track the eyes, nose, and lips. Based on the coordinates of these landmarks, a 3-D

mesh model of the face is fit to every video frame. The mesh consists of many adjacent triangular shell

elements, which are parametrized by mass, stiffness, and damping matrices in order to model the material

properties of human skin. On top of this skin model, an anatomically-based dynamic model of muscle

movement is applied using an estimation and control framework. Expressions are predicted using tem-

plate matching in two different ways: by classifying the predicted underlying facial muscle movements,

and by classifying the optic flow vectors of each grid point directly. Both method achieve 98% accuracy on

prototypical expressions over a database of 52 video sequences.

3.4.4 Dimensionality Reduction

The last kind of geometric feature vectors that we consider are those formed by applying a dimensionality

reduction to the original fiducial point location vectors. Dimensionality reduction methods such as PCA

are very common in machine learning applications. They are most useful when the dimension of the input

vectors is very high, such as with appearance-based FER systems (described later in this chapter). However,

these methods also find use in geometry-based approaches to FER; we describe some systems that use

dimensionality reduction below.

One straightforward but useful modification to geometry-based feature extraction algorithms is to apply

principle component analysis (PCA) prior to classification. PCA is a method of transforming the input

vector so that most of the variance of the original data is captured in the dimension-reduced output vector.

A derivation of PCA is given in Section A.3.

Two of the purely geometric-based FER systems in our survey use this approach. Kimura and Yachida

[KY97] use a “potential net” model to track 899 (29x31) locations on the face. These points do not corre-

spond directly to facial landmarks but instead are distributed in a grid pattern centered at the nose. The

potential net models the deformation of the face as a set of forces applied to springs. Each grid point is

connected to its four closest grid neighbors. By requiring that the total force within the potential net sum to
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zero, the motion of each fiducial point can be calculated. Kimura and Yachida’s system uses a Karhunen-

Loève expansion (a generalization of PCA) to reduce the dimensionality of the final feature vector. One

model vector for each of 3 prototypical emotions is estimated in the low-dimensional space. For classifi-

cation, the input vector of grid point motions is projected onto the axes that were computed from the K-L

expansion. The distances of this projection from each of the expression models and from the origin are used

to estimate the type and degree of expression, respectively. No numeric results were listed in the paper, but

test results when classifying expression of novel human subjects were described as “unsatisfactory” in the

paper [KY97].

Gokturk, Bouguet, Tomasi, and Girod [GTGB02] track 14 fiducial points on the face in three dimensions

using a cost minimization-based monocular tracking system. Given the initial position vectors of the fidu-

cial points for each subject, their system can subtract away the rigid motion of the head to compute the

deformation of the face due solely to facial expression. Their system then applies PCA to the non-rigid

face motion vectors to compute facial motion along the principle movement axes. The final feature vector

includes not only the principle components themselves, but also their first temporal derivative. Support

vector machines are then used to classify 5 prototypical expressions. Accuracy results of a database of 235

frames from two subjects were reported as 91% over the 5 expressions [GTGB02].

3.5 Appearance-based Features

The second main approach to automatic FER is the appearance-based approach. As stated earlier, these are

methods that classify facial expressions based on the color of the face pixels. Appearance-based algorithms

are wide-ranging and include optic flow, dimensionality reduction techniques such as PCA and ICA, and

image filters. We describe each type of method and the associated FER systems below.

3.5.1 Optical Flow

One of the earliest developed appearance-based methods of FER was optic flow analysis. Optic flow analysis

endeavors to track object movement within an image by analyzing the change in pixel intensity of each

image location (x, y) over multiple frames in a time-ordered sequence. The output of an optic flow com-

putation for a particular image is a vector (vx, vy) for each pixel in the input image; vx and vy represent

the magnitudes of the image velocities in the x and y directions, respectively. The v = (vx, vy) vectors

over multiple pixel locations can be combined into feature vectors and then classified as a particular facial

expression. Feature vectors based on optic flow can consist of the image velocities of certain fiducial points

or of flow fields computed over entire image patches. We give a short derivation of optic flow analysis in

Section A.4.
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One of the first FER systems to employ optic flow was developed by Mase [Mas91]. Mase proposed

two alternative approaches: top-down and bottom-up. The top-down method attempts to recognize facial

expressions by first using optic flow to recognize the individual muscle activations which formed the ex-

pression. In the bottom-up approach, the facial expression is recognized directly from the optic flow fields

over a grid of M ×N small image rectangles. Mase’s system implements the bottom-up method and calcu-

lates the mean and variance of the optic flow within each rectangle along both the horizontal and vertical

directions. The feature vector is computed by selecting the c features which maximize the ratio of between-

class to within-class distance in the training set. This vector is then processed by a k nearest neighbors

classifier. For prototypical expressions, Mase’s system achieves recognition rates of approximately 80%

[Mas91].

Later research in FER using optic flow was conducted by Yacoob and Davis in [YD96]. Their approach

resembles Mase’s proposed top-down model in that it attempts to determine the underlying muscle move-

ments of the face in order to determine the expression. Given rectangular windows surrounding the mouth

and eyebrows of each face image, optic flow fields are calculated along eight principle directions. Each

window is then partitioned using free-sliding dividers, and the optic flow along each principle direction is

calculated within each window partition. The dividers are adjusted so that the strength of the flow fields as

well as the fields’ homogeneity within each window region are jointly maximized. Final feature vectors are

calculated as the optic flow projections at the optimal divider settings, and these vectors are then processed

by rule-based classifiers for expression classification, similar to [BY95]. Their system achieves a recognition

accuracy of 86%. 2

3.5.2 Pixel Intensity Values

Whereas optical flow was perhaps the first appearance-based technique applied to FER, the simplest type

of feature in appearance-based FER systems is the color of an individual pixel. Most FER systems process

gray-scale images, and thus the pixel color can be renamed pixel intensity. A set of pixel values extracted

at certain key points or over a whole can region can then be fed to a classifier to determine the facial

expression.

Very few FER systems classify raw pixel intensity values directly without at least employing some form

of feature selection. Those systems that do use simple pixel values as feature type have exhibited low recog-

nition accuracies compared to other systems. Littlewort, et al [LFBM02], in a comparative study of different

FER techniques, classified six prototypical facial expressions using pixel intensity values and SVMs. Their

system achieves only around 73% accuracy when pixels are extracted from the whole face. Despite the

low accuracy that has been reported, pixel intensity features do offer one important benefit - they can be

2Accuracy was reported as a confusion matrix; we computed the percent correct ourselves.
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extracted simply and quickly.

3.5.3 Dimensionality Reduction in Appearance-Based Systems

In appearance-based facial expression recognition systems, the fundamental unit of information is the pixel

value, and features may be extracted from a pixel set by means of cropping, scaling, and filtering. Even at

low resolution, the number of pixels in a face image is on the order of hundreds. Moreover, many of the

pixels in this vector may contain little information that is useful for classification. It is possible, for example,

that pixels located in certain regions of the face may not change from one facial expression to another, thus

rendering useless the corresponding coordinate of the feature vector. Another possibility is that one pixel

value in the feature vector might be completely dependent on other (perhaps neighboring) pixels. In both

cases, the feature vector contains redundant information, and classification performance might improve by

removing the superfluous components. Standard techniques such as PCA and ICA are often applied for

this task; we describe the associated appearance-based FER systems below.

Principle Component Analysis

One popular method of reducing the dimension of feature vectors is principle component analysis (PCA).

When PCA is applied to a dataset of dimension n, each vector in that dataset is projected onto p << n

principle components. Because of the way the components were calculated, the resultant set of projections

still retain most of T ’s original variance, but the dimension of the resulting dataset is much smaller. We

give a derivation of PCA in Section A.3.

Several appearance-based FER systems use PCA prior to expression classification. Both Donato, et al

[DBH+99] and Bartlett, et al [BDM+00] classify 6 upper- and 6 lower- face AUs using PCA and the nearest

neighbor algorithm. The first 30 principle components of the difference images of the relevant half-face

(upper or lower) are extracted and classified for AU content. The systems achieve 79.3% average accuracy

on 12 AUs. Fasel and Lüttin [FL00] performed a similar experiment to classify 9 individual AUs and 16

AU combinations, but on a different test database. As in [DBH+99], their system achieves 79% accuracy on

single AUs, and it delivers 74% accuracy when tested on both single AUs and combinations [FL00].

Finally, Bartlett, et al [BHES99] classify 6 upper- and 6 lower-face AUs by extracting the first 50 principle

components of difference images. Using a two-layer neural network their system achieves recognition rates

of 88.6%.

Independent Component Analysis

In PCA, the projections of T along the principle components are uncorrelated, but they are not necessarily

statistically independent. Hence, certain higher-order image dependencies such as facial lines may remain
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across the data dimensions even after PCA is performed [DBH+99]. Independent component analysis (ICA) is

a technique for removing such dependencies from the input data set. Under ICA, the set of generated basis

vectors e1, . . . , en are called independent components, and the projection of T onto each ei is statistically

independent of all the other projections. A derivation of ICA is available from Hyvarinen and Oja [HE00].

In contrast to PCA, the independent components of ICA are inherently unordered. Thus, when using

ICA for dimension reduction of a feature set, a metric of ordering must be defined externally and then

applied to the set of components. One possible metric is the class discriminability, defined as the ratio of

the between-class to within-class variance of an independent component when applied to the training set.

This approach has been used by [DBH+99].

For FER, ICA has proven to be highly effective, yielding recognition rates as high as with Gabor filters

(see Section 3.5.4). In terms of execution time, ICA can outperform Gabor-based feature extraction by an

order of magnitude [BDM+00]. In the literature, ICA has yet only been deployed in a few FER systems. In

Bartlett, et al [BDM+00] and Donato, et al [DBH+99], an ICA representation achieves 96% accuracy when

classifying 6 upper- and 6 lower-face AUs, thus tying for first place with Gabor filters among the techniques

that were investigated. Fasel and Lüttin [FL00] used ICA and the nearest neighbor algorithm to classify 9

individual AUs and 16 AU combinations. Their system achieves 83% accuracy on single AUs and 74%

accuracy when tested on both single AUs and their combinations.

3.5.4 Gabor Filters

Although ICA does deliver high recognition accuracy, it also suffers from the drawback of a long training

time for the calculation of the independent components [Lit]. In general, dimensionality reduction tech-

niques have given way to image filtering techniques in the FER literature. Filters are a means of enhancing

the facial lines, skin bulges, and other appearance changes that facial expressions can induce.

One of the mostly commonly deployed and successful appearance-based methods for facial expression

recognition is the Gabor decomposition. The Gabor decomposition of an image is computed by filtering

the input image with a Gabor filter, which can be tuned to a particular frequency k0 = (u, v) where k =

‖k0‖ is the scalar frequency and ϕ = arctan( v
u
) is the orientation. Gabor filters accentuate the frequency

components of the input image which lie close to k and ϕ in spatial frequency and orientation, respectively.

A Gabor filter can be represented in the space domain using complex exponential notation as:

Fk0
(x) =

k0
2

σ2
exp

(

−
k0

2x2

2σ2

)(

exp (ik0 · x) − exp

(

−
σ2

2

))

where x = (x, y) is the image location and k0 is the peak response frequency [LVB+93]. An example of

a Gabor filter is given in Figure 3.1, which shows the absolute value (left), real component (middle), and
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Figure 3.1: The left, middle, and right graphics above show the absolute value, and the real and imaginary
components of a sample Gabor filter.

imaginary component (right) of the filter in the space domain. Notice how the filter is spatially local in all

three cases. The real and imaginary components accentuate respectively the symmetric and asymmetric

responses of the image to the filter’s characteristic frequency and orientation. The filter can then be applied

to an input image I ∈ IR2 using two-dimensional convolution. More commonly, however, the Gabor filter

is computed in the frequency domain as:
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)
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2
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where k = (u, v) represents the horizontal and vertical spatial frequency components of the input image

(equation from [LVB+93]). The Fourier-transformed image is multiplied by G and the result is then inverse-

transformed back into the space domain.

For FER, often a filter bank of multiple Gabor filters tuned to different characteristic frequencies and

orientations is used for feature extraction. The combined response is called a jet. Filter banks typically

span at least 6 different orientations and have frequencies spaced at half-octaves. Prior to classification, the

extracted features are usually converted into real numbers by calculating the magnitude of the complex

filter response.

Gabor filters can be used for feature extraction in two main ways: by extracting the Gabor responses at

fiducial points on the face, or by extracting them over entire image regions. In the former case, the Gabor

responses are best computed directly in the space domain by convolving each filter at the desired image

locations. In the latter, it is usually faster to use the Fast Fourier Transform (FFT).

Some of the most successful appearance-based FER systems to-date employ Gabor filters for feature

extraction. We discuss such systems below.

Gabor Responses at Fiducial Points

The first software systems to deploy the Gabor decomposition for FER calculated the Gabor responses only

at specific locations on the face. Zhang, et al [ZLSA98], Zhang [Zha98], and Lyons and Akamatsu [LA98]
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were among the first to use such an approach. In their systems, a Gabor filter bank consisting of 3 spatial

frequencies and 6 orientations is convolved with the input image at selected facial points derived from a

facial mesh model. In [ZLSA98] and [Zha98], a multi-layer perceptron is trained to recognize prototypical

expressions with accuracy near 90%. In [LA98], each face is allowed to express not just a single prototypical

emotion, but instead multiple emotions at different intensities. Using the cosine similarity measure, Gabor

responses are used to predict the intensity of each expression category. The intensities were correlated

with those coded by human subjects, but no percent-correct statistics were reported. In later work [LPA00],

Lyons, et al developed a FER system by classifying the Gabor responses along facial mesh points using

linear discriminant analysis and the nearest neighbor classifier. The system achieved over 90% accuracy for

prototypical expressions.

Point-sampled Gabor features have also been used to recognize FACS AUs. In Tian, et al [lTKC00], for

example, a Gabor bank comprising 6 frequencies and 3 orientations is applied to the inner corner, outer

corner, and middle of each eye. By processing the Gabor responses using a 3-layer neural network, their

system achieves classification rates of 93% for AU 41, 70% for AU 42, and 81% for AU 43 [lTKC00]. In later

work [lTKC02], Tian, et al created a similar system that samples the Gabor responses of 20 facial points of

the eye, eyebrows, and forehead. They tested their method on a dataset in which subjects spanned a wider

range of ethnicities and which contained more head movement than most other FER databases. Under

these more challenging conditions, the Gabor-based system achieved an overall AU recognition rate on 8

AUs of only 32% [lTKC02].

Gabor Responses over Image Regions

The alternative to applying Gabor filters at specific points is to apply them instead to the whole face. Some

of the highest recognition accuracies in the FER literature have been achieved using the Gabor decomposi-

tion over entire image regions for feature extraction. Bartlett, Donato, et al [DBH+99], [BDM+00] developed

a recognition system using Gabor filters and the nearest neighbor classifier. Both implementations employ

a filter bank of 5 frequencies and 8 spatial orientations. In order to reduce the dimensionality of the Gabor

jets, the filtered images are sub-sampled by a factor of 16 prior to classification. This system achieves an

overall classification rate of 96% on 6 upper- and 6 lower-face AUs [DBH+99].

In subsequent work, Bartlett, et al [MGB+03] developed a Gabor-based AU recognition system that is

robust to natural, out-of-plane movements of the head. It employs both support vector machines and hid-

den Markov models for classification. When classifying the AU combination 1+2, it scores 90.6% accuracy,

and on AU 4 it achieves 75.0% accuracy. Littlewort-Ford, et al [LFBM01] used Gabor filters on difference

images of the face and support vector machines to classify AUs 6 and 12 in order to distinguish natural

smiles from posed, “social” smiles. Using a linear SVM kernel to classify the Gabor-filtered images, 75% of
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smiles were classified correctly. Non-expert human subjects, on the other hand, achieved only 60% accuracy

when scoring the same dataset [LFBM01].

Gabor Responses at Learned Locations

The final Gabor-based method of feature extraction that we consider combines the advantages of both of the

previous approaches: a sparse set of Gabor responses from learned locations, frequencies, and orientations

are selected from the whole face image, and the resultant feature vector is then classified. This strategy

has been employed in two FER systems: Littlewort, et al [LBF+04] compare two methods of selected Ga-

bor filter classification: in one, they classify Gabor responses selected by Adaboost [FS99] using support

vector machines (AdaSVMs), and in the other, they classify the selected Gabor responses directly using

Adaboost. Recognition rates when detecting 7 prototypical emotions were highest with AdaSVMs, up to

93.3% accuracy.

Finally, Bartlett, et al [BLF+06] use a similar method as in [LBF+04] for the classification of 20 AUs: they

use Adaboost to classify Gabor responses extracted from automatically detected faces at 8 orientations and

9 frequencies. Percent-correct accuracy on a combined dataset from both the Cohn-Kanade and Ekman-

Hager databases was 90.9%.

Configuring the Filter Bank

One consideration when using Gabor filter banks is the selection of peak frequencies and orientations of

the individual filters. While most FER systems employ 8 spatial orientations spaced π/8 radians apart,

there is no standard set of peak frequency values that has proven to be optimal. Little published research

has explicitly investigated the ideal filter bank for face analysis. Fasel and Bartlett [FB02] investigated the

optimum filter bank for the purpose of locating fiducial points of the face, and their results indicate that

only one, very low-frequency value (4 iris widths per cycle) may be needed for optimal accuracy. However,

Donato, et al [DBH+99] investigated the same question of optimum frequency values for the task of FER.

Their results indicate that the higher frequencies were more important for classification. Optimum selection

of frequencies thus likely depends on the specific application, and there is yet no consensus on the best

choice of filter bank.

3.5.5 Haar Wavelets

Although Gabor feature-based systems have produced some of the highest recognition accuracies in FER,

they also suffer from two drawbacks: the large size of the image representation, and the high computa-

tional expense involved in computing it. For a bank of 40 Gabor filters, for example, the combined Gabor

responses over all image pixels consume 40 times as much memory as the single input image. In order
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Figure 3.2: Examples of Haar wavelets in a true Haar decomposition superimposed onto a face image.
Width, height, and (x, y) positions of all wavelets are aligned at powers of 2.

to apply a Gabor filter bank to an image, the input image must first be transformed into the frequency

domain using an FFT. Then, for each filter G in the bank, the transformed image must be multiplied by G

and then inverse-transformed back into the space domain. The total computational expense of the single

Fourier transform and all the inverse transforms is substantial. Even when only selected Gabor responses

are classified, the convolutions in the space domain incur some cost.

An alternative to Gabor filters which has already proven both effective and efficient in face analysis is

the Haar filter, based approximately on the Haar wavelet decomposition. The two-dimensional Haar de-

composition of a square image with n2 pixels consists of n2 wavelet coefficients, each of which corresponds

to a distinct Haar wavelet. The first such wavelet is the mean pixel intensity value of the whole image;

the rest of the wavelets are computed as the difference in mean intensity values of horizontally, vertically,

or diagonally adjacent squares. Figure 3.2 shows three example Haar wavelets superimposed onto a face

image. The Haar coefficient of a particular Haar wavelet is computed as the difference in average pixel

value between the image pixels in the black and white regions. The two-dimensional Haar decomposition

is exactly complete, i.e., the Haar decomposition of an image with n2 pixels contains exactly n2 coefficients.

Each wavelet is constrained both in its (x, y) location and its width and height to be aligned on a power

of 2. For object recognition systems, however, these constraints are sometimes relaxed in order to improve

classification results.

In contrast to Gabor filters, Haar filters require no FFT for their extraction, and with the “integral image”

technique demonstrated by Viola and Jones in their landmark face detection paper [VJ04], Haar features

can be computed in only a few CPU instructions. In this thesis, we implement such a Haar feature-based

system and evaluate its performance in Chapter 5. Section A.5 describes the Haar decomposition in greater

detail. Here, we provide a brief review of object detection systems that deploy Haar wavelets for feature

extraction.

Applications to Object Detection

One of the earliest applications of the Haar wavelet to object recognition was developed by Jacobs, et al

[JFS95] for querying an image database. Theirs is the only object recognition system known to us that uses

true Haar wavelets in the strict mathematical sense for feature extraction. In their application, the user
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could search through an image database for a target image by sketching a crude version of the desired

picture inside a paint window. Whenever a query was performed, the Haar wavelet decomposition of

the sketched image was computed, and the 60 Haar wavelet coefficients with the largest magnitudes were

extracted. In order to select images in the database which looked similar to the user’s sketch, a similarity

metric was calculated for each image in the database. This metric was computed based on the difference

in magnitudes of each of the 60 selected Haar coefficients. The pictures with the twenty highest similarity

scores were then listed as the result of the query. According to the results given in [JFS95], the Haar wavelet-

based approach clearly outperformed competing methods both in terms of accuracy and speed.

Later research on Haar wavelets for object recognition has departed somewhat from the original math-

ematical definition of the wavelet decomposition so that the extracted features are more suitable for image

classification. Papageorgiou, et al [POP98] modify the wavelet decomposition so that the wavelet basis is

shifted at 4 times the normal density of the conventional Haar transform. The resulting set of “quadruple-

density” Haar coefficients allows object recognition at a finer resolution than would be possible using the

standard density.

Applications to FER

For automatic FER, only very few systems have been developed to date which uses Haar wavelets for facial

expression recognition. Wang, et al [WAWH04] use Haar features derived from integral images to classify

7 prototypical facial expressions. As in Viola and Jones’ work, [VJ04], they use Adaboost to select the best

features and create a weak classifier from each one. Instead of using threshold-based weak classifiers that

output discrete values in {−1, 1}, however, their system uses lookup-tables that map ranges of feature

values onto class confidences in [−1, 1] for each emotion category. Using the multi-class, confidence-based

version of Adaboost, Wang et al achieve 92.4% recognition accuracy on a database of 206 frontal facial

expressions. This result is slightly higher than the 91.6% accuracy which they measured when using a SVM

with RBF kernel on the same set of features. However, the statistical significance of this 0.8% difference is

not assessed. In terms of execution speed, their Adaboost-Haar method clearly outperforms the SVM-based

approach: the Adaboost method is 300 times faster [WAWH04].

Isukapalli, et al [IEG06] combine face detection with expression classification by using a dynamic tree

classifier. Each patch in an image is classified as either a face or non-face using a series of N Adaboost

classifiers and Haar features, as in [VJ04]. The expression is predicted from the first d < N classifiers using

a dynamic tree classifier: at each each step in the sequence, the next classifier to use is selected dynamically

in order to minimize the uncertainty of the facial expressions after d rounds. Accuracy when recognizing

prototypical expressions on the Olivetti Research database was 61.33% [IEG06].

To our knowledge, no previous work has investigated the suitability of Haar features for FACS AU
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recognition. We present our own study of this approach in Chapter 5 of this thesis.

3.6 Comparing the Two Approaches

Geometry- and appearance-based FER systems contrast starkly and are complementary. Geometry-based

methods completely disregard all color information (except possibly to track the feature points). Their

performance in classifying facial expressions depends on the particular set of facial points that the sys-

tem designer chooses to track. Appearance-based methods, on the other hand, disregard the geometric

relationships between different points on the face except to the extent that these relationships can be cap-

tured by frequency-tuned image filters. Given that these two paradigms of expression recognition differ

so greatly, and given that both kinds of FER systems have achieved recognition accuracies above 90%, it

is important to determine under which conditions each method delivers higher accuracy. Evaluating the

comparative performance of these two approaches is difficult because different FER systems are tested on

different datasets. A few research studies do exist, however, which compare the two strategies with respect

to classification accuracy.

Zhang [Zha98] and Zhang, et al [ZLSA98] compare Gabor-based and geometry-based FER methods for

prototypical expressions on an image database containing frontal faces. In their experiment, the Gabor de-

compositions are computed at 3 spatial frequencies and 6 orientations at 34 landmark points distributed

over the face. In the geometry-based method, the feature vector consists of the positions of the same 34

fiducial points. For both approaches, a two-layer neural network is used as the classifier. Empirical re-

sults show that the appearance-based method delivers substantially higher recognition accuracy - typically

around 20% - regardless of the number of hidden units [ZLSA98],[Zha98].

Tian, Kanade, and Cohn [lTKC02], however, dispute the higher recognition accuracy of the Gabor

method claimed by Zhang. On an ethnically more heterogeneous database containing more head move-

ment, they perform a similar experiment as Zhang, et al, except that AUs, not prototypical expressions,

are classified. Their results show that, when classifying expressions with complex AU combinations, AU

recognition accuracy fell dramatically to 32% with the Gabor method, whereas the geometry-based ap-

proach retained 87.6% accuracy. However, the comparison in [lTKC02] did not test the appearance-based

approach with Gabor responses measured over the entire face - a method which has proven highly effective

[DBH+99].

From the limited evidence available, it is difficult to predict which approach will ultimately prove su-

perior. Cohn, et al [CKM+01] report that the face analysis group of CMU/Pittsburgh, which has used a

geometry-based approach, and the group at UCSD, which uses only appearance-based features, are com-

peting for higher recognition performance on the same real-world FACS AU recognition task. This study
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will hopefully help to differentiate the two approaches more clearly.

3.7 Combining Geometric and Appearance-based Features

As an alternative to choosing either appearance-based features or geometry-based features, FER systems can

also be built that exploit both. Several systems already exist which take this approach: The system of Zhang,

et al [Zha98],[ZLSA98], for example, uses a 3-layer neural network to classify a combined set of Gabor

responses and raw facial point locations. The Gabor responses are sampled only at particular locations

in the image. On an expression database containing approximately equal numbers of the 7 prototypical

emotions [Zha98], their system achieves around 65% recognition accuracy. When classifying only Gabor

features, their system achieves a much higher 90% accuracy. Surprisingly, the combined system - Gabor

responses plus fiducial point locations - does no better than Gabor features alone (90%). This shows that

combined-feature systems must be engineered carefully in order to reap the benefit of both feature types.

Tian, et al [lT04],[lTKC02] developed a similar system using a neural network to classify both Gabor and

geometric features. In contrast to Zhang, et al [Zha98],[ZLSA98], however, their system converts the fiducial

point locations into a set of 15 parameters describing the state (e.g., open/closed) of the lips, nasolabial

furrows, and eyes. Moreover, the Gabor responses are calculated over the entire face, not just at particular

points. The output of their classifier is a set of FACS action units. On their dataset, the combined approach

(92.7% accuracy) demonstrates a clear advantage over either appearance-based (32%) or geometry-based

features (87.6%) alone [lTKC02].

Cohn, et al [CKM+01] use manually constructed models to classify expressions of the eyes and brows. In

particular, “brow-up”,“brow-down”, and “non-brow motion” are classified using both appearance-based

features quantifying the amount of edges detected in the forehead (for wrinkle detection) and geometry-

based features measuring displacement of fiducial points along the eyebrows. Accuracy is reported as 57%

across the three classified actions [CKM+01].

Datcu and Rothkrantz’s system [DR04] classifies both prototypical expressions and AUs using a Bayesian

belief network and a combined set of three feature types: (1) relative positions of fiducial points; (2) dis-

placements of individual fiducial points through time; and (3) PCA projection coefficients of chin, forehead,

and cheek regions. Unfortunately, although the system is described as “very promising”, no accuracy statis-

tics are reported in their paper.

Finally, Lanitis, et al [LTC95] use discriminate function analyzes to classify three types of features: (1)

a geometric representation modeling the shape and pose of the face (Active Shape Models); (2) shape-

invariant pixel intensity values computed by warping the face onto a standard model; and (3) pixel intensity

values along specific lines normal to the edge of the face. All features are pre-processed using PCA prior to
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classification. The system achieves 74% accuracy whcn classifying prototypical expressions [LTC95].

3.8 Conclusions

In the preceding sections we have described numerous systems for automatic FER that utilize a diverse

range of feature types, both appearance-based and geometry-based. One of the fundamental issues that

concerns us is which of these two approaches is superior. Unfortunately, no study to date has conclusively

answered this question, though the pending results of the study mentioned in [CKM+01] will be useful.

Another important issue is how the strengths of both methods can effectively be combined in order to

create a classifier superior to either individual method. Systems that combine the two approaches do exist

(see Section 3.7), but they are not based on the most promising methods from each of the appearance- and

geometry-based feature categories. One interesting study would be to create a combined feature vector of

fiducial point locations as well as Adaboost-selected Gabor responses using support vector machines as the

classifier. Given the high performance on FER tasks achieved by these machine learning tools individually,

it would be instructive to investigate whether they could yield even higher performance in cooperation.

3.9 Summary

We have surveyed a broad-range of systems for automatic FER. In our survey we focused on two issues:

whether local segmentations yield superior accuracy to global segmentations, and which category of feature

vector - appearance-based or geometry-based - leads to higher accuracy. Finally, we compared the two

approaches and suggested a possible choice of combining the strengths of both.
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Chapter 4

Support Vector Machines

The development of the support vector machine (SVM) and kernel methods have garnered considerable

attention in the machine learning literature in recent years. The basic principle of the SVM is simple: max-

imize the distance in the input space between the two classes of data points one wishes to classify. SVMs

offer several advantages over other classifiers: For one, training time of the classifier does not suffer from

a high dimensional feature vector. Given the high dimensionality of such feature types as the Gabor de-

composition of an entire face, this advantage is significant. For another, the SVM offers both power and

flexibility through use of the “kernel trick” - the default linear kernel can be replaced with a RBF, polyno-

mial, sigmoidal, and many other kernels which may separate the data points more cleanly for the given

problem domain. Because of these advantages, and because of the many successful deployments of the

SVM in machine learning problems, both in FER and elsewhere, we provide a mathematical derivation

of the support vector machine in the following sections. The interested reader may also wish to consult

[Bur98] and [SS98].

4.1 Premise

Suppose T = {(x1, y1), . . . , (xl, yl)} is a set of l training data, where each xi is a data point in IRd and each

yi ∈ {−1, 1} is the corresponding classification label. Suppose also that the sets T + = {xi | yi = 1} from

T− = {xi | yi = −1} are linearly separable in IRd so that a hyperplane can be formed between them.

For any such separating hyperplane H , consider the subset of T + of points that lie closest to H . These

points lie in a hyperplane H+ which is parallel to H ; denote the distance between H+ and H as d+. Sim-

ilarly, the subset of T− of points closest to H lie in a hyperplane H−, which is parallel and distance d− to

H . The sum of d+ and d− equals the distance from H+ to H− and is known as the margin of H . Denote this

margin as d.

27



H
+

H
−

H

H
−

H

H
+

d+

d−

d

Figure 4.1: A hypothetical training set in IR2 in which the solid points have positive label and the hollow
points have negative label. Notice that, although the hyperplane H in each figure separates the two classes,
only the hyperplane in (b) maximizes the margin d.

A support vector machine (SVM) is created by finding the unique separating hyperplane which maximizes

the margin between T + and T−. This optimal hyperplane lies halfway between H+ and H− so that the

distance from any point in all of T to H is likewise maximized. Figure 4.1 illustrates a hypothetical data

set and two separating hyperplanes; only the decision boundary in Figure 4.1(b) is optimal. The training

points which lie on H+ or H− are called the support vectors of T .

4.2 Training Phase

In order to compute H , we must first describe it formally. The general equation for a hyperplane is w·x+b =

0, where w is the normal vector and b/‖w‖ is the perpendicular signed distance to the origin. The same

plane can be described by an infinite number of equations by scaling w and b. For our purposes, we select a

particular scale such that the equations for H−, H , and H+ are as follows (recall that, since all three planes

are parallel, their normal vectors can be scaled to be equal):

H− : w · x + b = −1 (4.1)

H : w · x + b = 0 (4.2)

H+ : w · x + b = +1 (4.3)

H− and H+ contain the negatively and positively labeled data points closest to H , respectively. Since all

data points not in H+ or H− must lie even farther from H , we require that:

w · xi + b ≥ +1 ∀xi ∈ T + (4.4)

w · xi + b ≤ −1 ∀xi ∈ T− (4.5)
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These two conditions can be unified by introducing the classification label yi:

yi(w · xi + b) ≥ 1 ∀xi ∈ T (4.6)

We must identify the hyperplane H with maximum margin. The margin d of H equals the distance

between H+ and H−. The distance from H+ to the origin is 1−b
‖w‖ , and the distance from H− to the origin is

−1−b
‖w‖ . Therefore, the margin d equals:

1 − b

‖w‖
−

−1 − b

‖w‖
=

1 − b + 1 + b

‖w‖
(4.7)

=
2

‖w‖
(4.8)

The margin can thus be maximized by minimizing ‖w‖, or, equivalently, by minimizing 1
2‖w‖2. The values

for w and b must simultaneously fulfill the conditions yi(w·xi+b) ≥ 1 for every xi ∈ T . This is a constrained

optimization problem, and we will use the Lagrangian method to solve it.

4.2.1 The Lagrangian Method and the Wolfe Dual Form

The Lagrangian method for solving constrained optimization problems includes three components: (1)

the objective function f(x) to be minimized (or −f if f is to be maximized); (2) the constraint functions

c1(x), . . . , cn(x); and (3) the vector α of n Lagrange multipliers (one for each constraint function). The

Lagrangian function is then assembled as:

L(x, α) = f(x) −
n
∑

i=1

ci(x) (4.9)

The solutions to certain types of constrained optimization problems can be found by solving the Wolfe dual

problem: instead of minimizing f subject to the constraints c1(x), . . . , cn(x), one instead maximizes the La-

grangian subject to the constraint that L is minimized with respect to x. Both the primal and dual problems

find their solutions at the same point along the Lagrangian curve, namely the saddle point.

The Wolfe dual method is valid under the following conditions: (a) the optimization problem is a convex

programming problem; (b) both the objective function and the constraint functions are differentiable; and

(c) the constraints are linear1. Solutions to the Wolfe dual problem are then guaranteed to occur at global

minima due to the convexity of f [Fle80].

Before applying Wolfe’s dual to our problem, we first verify that it fulfills the stated assumptions. First,

a convex programming problem consists of a convex objective function to be minimized over a convex set.

1In fact, the Wolfe dual also applies to convex programming problems with certain non-linear constraints, provided that these
constraints meet a regularity assumption (see [Fle80]).
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In our problem, the objective function is 1
2‖w‖2; since its second derivative is positive everywhere, it is

a convex function. To verify that the feasible set of points satisfying the constraints is a convex set, we

must first note that any single linear constraint defines a convex set. Since the intersection of multiple

convex sets is likewise convex, and since multiple simultaneous linear constraints represent exactly such

an intersection, our feasible set is convex. Finally, the conditions that all functions are differentiable, and

that the constraints are linear, are clearly true. We may thus proceed.

The Lagrangian function of our optimization problem equals:

L(w, b, α) =
1

2
‖w‖2 −

l
∑

i=1

αi [yi (w · xi + b) − 1] (4.10)

where α is the vector of the l Lagrange multipliers. Since the constraints we are dealing with are inequality

constraints, each component of α must be non-negative at the solution. As stated above, we must minimize

L with respect to w and b. This requires that the derivatives ∂
∂w

L and ∂
∂b

L equal zero. The first such

differentiation yields:

∂

∂w
L(w, b, α) =w −

l
∑

i=1

αiyixi = 0 (4.11)

=⇒ w =

l
∑

i=1

αiyixi (4.12)

This equation reveals two facts about w: First, since the (xi, yi) pairs are known, one need compute only

the αi to determine w. Second, only those xi for which αi > 0 affect the determination of the hyperplane.

These data points lie on H+ (or H−) and are called the support vectors of the training set. All data which are

not support vectors could, hypothetically, be removed from T without affecting the placement of H .

We can substitute
∑l

i=1 αiyixi for w into the original Lagrangian to yield a simplified function W :

W (b, α) =
1

2

(

l
∑

i=1

αiyixi

)2

−

l
∑

i=1

αi







yi









l
∑

j=1

αjyjxj



 · xi + b



− 1







(4.13)

W (b, α) =
1

2

l
∑

i,j=1

αiαjyiyjxi · xj −

l
∑

i,j=1

αiαjyiyjxi · xj −

l
∑

i=1

αiyib +

l
∑

i=1

αi (4.14)

W (b, α) =
l
∑

i=1

αi − b
l
∑

i=1

αiyi −
1

2

l
∑

i,j=1

αiαjyiyjxi · xj (4.15)

We will use the second required differentiation (with respect to b) to simplify W further.

∂

∂b
L(w, b, α) =

l
∑

i=1

αiyi = 0 (4.16)
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Substituting 0 for
∑l

i=1 αiyi from Equation 4.16 we arrive at:

W (b, α) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjxi · xj (4.17)

The simplified function W represents the Lagrangian minimized with respect to w and b. It must still

be maximized with respect to the remaining variables, i.e., the Lagrange multipliers α. This represents

a quadratic programming problem and can be computed efficiently using computer software. Once the

values of α have been determined, we can then calculate w according to Equation 4.12.

4.2.2 Determining b

We must still determine b. To do so, recall that we first minimized L with respect to w and b. At such local

minima, the Kuhn-Tucker necessary conditions for a local minimizer apply [Fle80]. These include, among

others, the complementarity condition:

αi(yi(w · xi + b) − 1) = 0 (4.18)

which means that either the constraint yi(w · xi + b) − 1 must equal exactly 0 (an active constraint), or the

associated αi must equal zero. The points for which αi 6= 0 are, in fact, the support vectors. Once α and w

have been calculated, they can be substituted into Eq. 4.18. By substituting any particular data point xi, the

value of b can be retrieved. Usually, however, to enhance numerical stability in floating point computation,

the average b over all i is used [Bur98].

The SVM has now been trained.

4.3 Test Phase

Once the separating hyperplane has been identified, it can be used to classify a new data point x with an

unknown classification label. Determining the associated y value requires merely testing on which side of

H the point lies; this is evaluated:

y = sign(w · x + b) (4.19)

The support vector machine is now a classifier.

31



4.4 Linear Inseparability

For some training sets, it may be impossible to find a linear hyperplane which separates the points in T +

from those in T−. In such cases, there is always at least one data vector xi for which Eq. 4.6 does not hold.

The standard approach to handling this inseparability is the soft-margin generalization of the support vector

machine. This approach introduces slack variables ξi which specify the amount by which Eq. 4.6 is violated.

The new constraint functions then become:

yi(w · xi + b) ≥ 1 − ξi (4.20)

for ξi ≥ 0. The objective function is also augmented with an additional term (a function of ξi) to penalize

errors:

1

2
‖w‖2 + C

(

l
∑

i=1

ξi

)k

(4.21)

Here, parameter C controls the amount by which errors are penalized (higher C results in larger penalty).

For exponent k = 1 or k = 2, the optimization problem remains quadratic; k is usually set to 1 for pattern

recognition problems.

The Lagrangian function of this new constrained optimization problem becomes:

L(w, b, ξ, α, µ) =
1

2
‖w‖2 + C

l
∑

i=1

ξi −
l
∑

i=1

αi [yi (w · xi + b) − 1 − ξi] −
l
∑

i=1

µiξi (4.22)

where the new vector of Lagrange multipliers µ was introduced to ensure non-negativity of each ξi. Since

each ξi ≥ 0 is an inequality constraint, we require that µi ≥ 0.

The solution is found analogously to the linearly separable case - by minimizing with respect to the pri-

mal variables (including the new variables ξi) and maximizing with respect to the dual variables (including

each µi). Minimization yields the following equations:

∂

∂w
L(w, b, ξ, α, µ) =w −

l
∑

i=1

αiyixi = 0 (4.23)

=⇒ w =

l
∑

i=1

αiyixi (4.24)

∂

∂b
L(w, b, ξ, α, µ) =

l
∑

i=1

αiyi = 0 (4.25)

∂

∂ξi

L(w, b, ξ, α, µ) =C − αi − µi = 0 (4.26)

32



Equations 4.24 and 4.25 are the same as for the separable case. The last equation C −αi −µi combined with

the constraints αi ≥ 0 and µi ≥ 0 yields the additional constraint that αi ≤ C. All three inequalities must

hold true at the solution. With the exception of the additional constraints αi ≤ C and µi ≥ 0, the solution

to the optimization problem proceeds exactly as for the separable case.

Eq. 4.24 is substituted into Eq. 4.22, to arrive at the function W :

W (b, ξ, α, µ) =
1

2

(

l
∑

i=1

αiyixi

)2

+ C

l
∑

i=1

ξi −

l
∑

i=1

αi







yi









l
∑

j=1

αjyjxj



 · xi + b



− 1 − ξi







−
l
∑

i=1

µiξi

(4.27)

W (b, ξ, α, µ) =
1

2

l
∑

i,j=1

αiαjyiyjxi · xj + C

l
∑

i=1

ξi −

l
∑

i,j=1

αiαjyiyjxi · xj −

l
∑

i=1

αiyib +

l
∑

i=1

αi +

l
∑

i=1

αiξi −

l
∑

i=1

µiξi

(4.28)

W (b, ξ, α, µ) =

l
∑

i=1

αi +

l
∑

i=1

(C − αi − µi)ξi −
1

2

l
∑

i,j=1

αiαjyiyjxi · xj − b

l
∑

i=1

αiyi (4.29)

We further substitute the expressions
∑l

i=1 αiyi = 0 and C − αi − µi = 0 to yield:

W (b, ξ, α, µ) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjxi · xj (4.30)

Eq. 4.30 is a quadratic programming problem, and its solution can be computed efficiently as such.

4.5 Non-linear Decision Surfaces

Some data sets, while linearly inseparable in their natural feature space (we assumed IRd), become sep-

arable after they are transformed into a space of higher dimension. The data in Figure 4.2, for example,

are linearly inseparable in IR1. When they are transformed into IR2 under the map Φ(x) = (x, x2), how-

ever, they become linearly separable; the corresponding optimal hyperplane is shown. This new-found

separability in higher-dimensional (or even infinite-dimensional) spaces can be exploited due to particular

properties of the SVM derivation. First, notice that the data points occur only in the form of inner products

in the training phase:

W (b, α) =
l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjxi · xj (4.31)
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H

Figure 4.2: A hypothetical training set in IR1 which is linearly inseparable (left). After it is mapped under
Φ = (x, x2) onto IR2, however, the data is separable (right) with optimal hyperplane H .

In the test phase, a similar substitution for xi and xj can be made. First, however, we must substitute Eq.

4.12 for w (note that we have added the two subscripts j for uniformity of notation):

yj = sign(w · xj + b) (4.32)

= sign

((

l
∑

i=1

αiyixi

)

xj + b

)

(4.33)

= sign

(

l
∑

i=1

αiyixi · xj + b

)

(4.34)

Now, since data only appear as inner products, we can replace all occurrences of the data vectors with a

kernel function K(x,y). K first transforms each input vector under the map Φ : IRd → H and then returns

the inner product in H . After substituting K for x · y, Equations 4.31 and 4.34 become:

W (b, α) =

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjK(xi,xj) (4.35)

and

yj = sign

(

l
∑

i=1

αiyiK(xi,xj) + b

)

(4.36)

respectively.

In the example illustrated in Figure 4.2, the kernel function K equals:

K(x,y) = Φ(x) · Φ(y) (4.37)

= (x, x2) · (y, y2) (4.38)

= xy + x2y2 (4.39)

= x · y + (x · y)2 (4.40)
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which describes a parabolic decision surface. Many kernel functions are possible - as long as K computes

the inner product of xi and xj within some inner product space, it is irrelevant to the SVM derivation

which particular space this is. Similarly, the transformation function Φ need not be known at all - only its

existence need be certain. Usually, one starts by creating a kernel K as opposed to deciding on a particular

transformation Φ [Bur98].

4.5.1 Kernel Functions and Mercer’s Condition

The issue still remains of which kernel functions actually correspond to the inner product of two trans-

formed input vectors. This question is answered by Mercer’s theorem, which states that a function K(x,y)

represents the inner product two vectors x and y in a Hilbert space if and only if the following condition

holds true for any function g:

∫

g(x)2dx is finite =⇒

∫

K(x,y)g(x)g(y)dxdy ≥ 0 (4.41)

Note that this theorem helps to determine neither the transformation Φ nor the space H to which Φ maps its

input. This theorem can be used, however, to prove the admissibility of certain kernels. The most common

kernels in practice are:

• The Gaussian radial basis function (RBF) kernel: K(x,y) = exp(−‖x− y‖2/(2σ2)).

• The polynomial kernel: K(x,y) = (x · y + 1)p for positive integers p.

• The sigmoid (hyperbolic tangent): K(x,y) = tanh(κx·y−δ). Note that this last kernel fulfills Mercer’s

condition only for certain values of κ and δ [Bur98].

Alternatively, one can verify that a kernel K is admissible for SVM classification by showing that it is a

dot-product kernel, or the kernel of a reproducing kernel Hilbert space. A particular class of kernel function

that guarantees it is admissible for SVMs is conditionally positive definite functions, described in [SSM98].

Finally, it is important to note that the kernel trick does not render the soft-margin SVM generalization

redundant - even when using a non-linear decision boundary, the data set will often be inseparable.

4.6 Polychotomous Classification

The SVM classifier introduced thus far can handle only 2-class (dichotomous) problems. A variety of tech-

niques does exist, however, with with SVMs can be applied to multi-class problems. Although we make

no attempt to survey all of them, we do describe two of the most common - the one-versus-rest (1-v-r) and

one-versus-one (1-v-1) methods. In the following discussion we assume n classes.
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In 1-v-r, n classifiers are trained in total. Each SVM i separates points of class i from points of all other

classes. When evaluating an unlabeled datum, the class i of the SVM with the highest output value (prior

to calling the signum function) is taken as the point’s class.

In 1-v-1, n(n−1)
2 classifiers are trained - one for each distinct pair (i, j) where i 6= j. During the test phase,

a voting mechanism is used in which the unlabeled datum is assigned the class with the highest number of

votes.

4.7 Summary

We have given a derivation for the support vector machine for both the linearly separable and the non-

linearly separable, “soft-margin” case. We also described how the standard inner-product function can be

replaced with a more powerful “kernel” function, provided that the kernel is Mercel admissible. Finally, we

suggested how SVMs, which are inherently a binary classifier, can be used for polychotomous classification

problems.
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Chapter 5

Experimental Results

This chapter presents our original research contributions to the field of automated FACS AU detection.

We investigate two issues: the effect of a local versus global segmentation on recognition accuracy, and

the suitability of Haar features combined with the Adaboost boosting algorithm [FS99] for facial expression

recognition. Before proceeding to describe the individual experiments, we first describe certain preliminary

parameters and techniques that are common to all the experiments we conduct.

5.1 Preliminary Parameters and Techniques

5.1.1 Facial Expression Database

For our experiments we use the Cohn-Kanade AU-Coded Facial Expression Database [KClT00]. This

database contains images of individual human subjects performing a variety of facial expressions. In the

public version of this database, 97 different human subjects, ranging from ages to 18 to 30, performed six

prototypical expressions: anger, disgust, fear, joy, sadness, and surprise. For each subject and expression,

the database contains a sequence of face images beginning with the “neutral” expression (containing no

AUs) and ending with the target expression. Certified FACS coders mapped each image sequence in the

database to the set of AUs that were exhibited in that sequence. In all the experiments in this chapter, we

trained and tested all classifiers on this data subset.

Our experiments required the positions of the eyes and mouth in each image. We used a subset of the

Cohn-Kanade Database containing 580 images from 76 human subjects and located the eyes and mouth of

each image manually. These locations were used to crop local windows around the eye, brow, and mouth

regions.

From each image sequence of each subject, we used the first two images, which contained the “neutral”

expression, and the last two images, in which the target expression was most pronounced. For each AU
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Brow AUs
AU 1 AU 2 AU 4

(200 samples) (120 samples) (176 samples)

Eye AUs
AU 5 AU 6 AU 7

(94 samples) (56 samples) (114 samples)

Mouth AUs
AU 15 AU 17 AU 20 AU 25 AU 27

(44 samples) (116 samples) (68 samples) (168 samples) (86 samples)

Pictures courtesy of Carnegie Mellon University Automated Face Analysis Group,
http://www-2.cs.cmu.edu/afs/cs/project/face/www/fac s.htm .

Figure 5.1: Classified AUs and Prevalence in Dataset

that we wished to classify, we randomly retrieved from the master database at least 40 images from image

sequences containing that AU. Example images for each AU, along with the number of images in our

dataset containing that AU, are shown in Figure 5.1.

5.1.2 Image Normalization

Prior to feature extraction and expression classification, each face (original size approximately 200-300 pix-

els wide) was rotated and scaled (using bilinear interpolation) such that the coordinates of the eyes and

mouth were constant over all images. The face width was set to 64 pixels; the inter-ocular distance was set

to 24 pixels; and the y-distance between the eyes and mouth was 26 pixels.

5.1.3 AU Classification

Each trained classifier detected the presence or absence of one AU, regardless of whether it occurred in

combination. We did not attempt to account for non-additive AU combinations.

5.1.4 Metric of Accuracy

As we discussed in Chapter 3, the percent-correct statistic, despite its prevalence in the literature, is fun-

damentally flawed. For all our experiments we instead measured accuracy as the area under the Receiver

Operator Characteristics (ROC) curve.
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5.1.5 Cross Validation

Ten-fold cross-validation was employed to test the generalization performance of each classifier. None of

the validation folds contained the same human subject. We calculated mean accuracies (area under the ROC

curve) over the ten test folds. When comparing recognition accuracy between two facial segmentations,

we performed matched-pairs t-tests over all the folds in order to assess the statistical significance of any

difference in mean performance.

5.2 Local versus Global Face Segmentation

The first issue we investigate in this chapter is the effect on AU recognition accuracy of a local versus a

global segmentation. Local segmentation of facial images prior to expression classification can significantly

reduce the computational cost of both the feature extraction and classification phases. Whether local face

analysis improves classification accuracy is an open question: On the one hand, segmenting the image

locally reduces the dimensionality of the feature vectors. This may help the classifiers to generalize better

during the training phase given the relatively small training sets available for certain AUs. On the other

hand, AUs can sometimes affect facial regions outside of their muscle origin. For example, AU 6 (cheek

raise), though triggered by a muscle circling the eye, can also accentuate the nasolabial furrow around the

mouth [EF78]. Local face analysis might suffer in this case due to the loss of relevant, global appearance

information.

In this section we assess the relative performance of the local and global segmentation strategies in terms

of AU recognition accuracy. We classify AUs using Gabor filters and linear SVMs - a prominent approach

in the FER literature. The experimental setup is described below.

5.2.1 Feature Extraction

Gabor features be extracted from each image. Gabor filters were extracted in the following manner: Each

segmented image was converted into a Gabor representation using a bank of 40 Gabor filters. Five spatial

frequencies (spaced in half-octaves) and eight orientations (spaced at π/8) were used. Feature vectors were

calculated as the complex magnitude of the Gabor jets, and vectors were then sub-sampled by a factor of

16 and normalized to unit length as in [DBH+99].

5.2.2 Segmentations

For the local expression analysis, images were segmented by cropping square regions around the center of

the eyes, brows, and mouth. The center of the brows was estimated by shifting the center of the eyes up by

one-fourth the inter-eye width. In all cases, the width of each square was 24 pixels.
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Figure 5.2: The global segmentation (left-most); and the local segmentations of the mouth, eye, and brow
regions, respectively (right 3 images).

For global analysis, the face square region was cropped at a width of 64 pixels around (xc, yc), where xc

is the x-coordinate of the midpoint between the eyes, and yc is the y-coordinate of the midpoint between

the eyes and mouth. See Figure 5.2 for an illustration of image segmentation.

5.2.3 Results

Recognition accuracies for both classifiers are displayed in Table 5.1. Actual ROC curves for these classifiers

are shown in Appendix B. The performance for each AU is reported for both the local and global segmen-

tations; the particular local segmentation depended on the region in which the AU is centered. Whenever

a statistically significant difference was identified (for 95% confidence, the p value of the t-test must be less

than 0.05), the superior segmentation is listed. When no statistically significant difference was present, an =

sign is listed. In some cases (e.g., AU 1), the mean accuracies between segmentations may differ by several

percentage points and yet not be statistically significant.

To summarize the results, the local segmentation failed to achieve any consistent and statistically signif-

icant advantage over the global segmentation in terms of recognition accuracy. More surprising is that the

global segmentation outperformed the local segmentation both for AU 6 in particular and on average.

5.2.4 Discussion

We view two factors as possibly responsible for the statistically indistinguishable, and sometimes even

significantly superior performance of the global segmentation relative to the local strategy. The first is

that certain AUs may affect regions of the face outside of the AUs’ muscular origin (see Section 5.2), and

therefore the global segmentation may profit from this non-local appearance information. The second is

that, due to the high degree of AU correlation in the Cohn-Kanade database, one AU in one face region

may be predictive of another AU elsewhere in the face.

Inter-AU Correlation

Some AUs are easier to detect than others, both by humans and, as witnessed by the results of Table 5.1,

by computerized classification. Suppose now that AU i were more difficult to classify than AU j: If it
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Table 5.1: Cross-validation recognition accuracies (area under the ROC curve) for all AUs using support
vector machines and Gabor features.

Local to Global Comparison
Segmentation

AU # Local Global Best

Brow AUs
1 89.97 96.43 =
2 94.58 95.17 =
4 93.20 97.04 =

Eye AUs
5 98.48 95.47 =
6 89.71 96.12 Global
7 98.53 98.64 =

Mouth AUs
15 97.95 97.56 =
17 93.29 95.90 =
20 97.29 96.49 =
25 98.92 98.52 =
27 99.54 99.83 =

Avg 95.59 97.01

were known that AU i were perfectly correlated with another AU j (ρij = 1), then a classifier for AU i

could attempt to classify instead AU j, and then output the same result for AU i. Note that the global

segmentation could benefit from this correlation even if AUs i and j occur in different parts of the face.

A local segmentation strategy, on the other hand, would be unable to observe AU j’s appearance changes

on the face (since they would lie outside AU i’s local segmentation) and thus would not profit from this

correlation.

This hypothesis is supported by the matrix of inter-AU correlations over our data subset given in Table

5.2. Correlation coefficients over the entire Cohn-Kanade database are similar. We considered the correla-

tion between AUs i and j to be high if |ρij | ≥ 0.60; the corresponding entries are shown in bold. Notice

how AUs in one region of the face may be highly correlated with AUs in a different region. In particular,

AU 1 is highly correlated with AU 25, and AU 2 is highly correlated with both AU 25 and AU 27.

In order to test the effect of inter-AU correlation on recognition performance, we performed the fol-

lowing experiment: To every feature vector of both the global and local segmentations, we appended the

classification label aui ∈ {0, 1} of every AU except the one to be classified. For instance, for a classifier for

AU 1, we augmented the standard Gabor feature vector Fn of each classified image n to be:

F ′
n = Fn . (au2, au4, au5, au6, au7, au9, au10, . . .)

where the dot . represents vector concatenation, and aui is the actual classification label for AU i in image

n. Each feature vector was thus given perfect knowledge of the presence or absence of every other AU (not
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Table 5.2: Inter-AU correlation matrix. Entries ρij where |ρij | ≥ 0.60 (other than self-correlation) are marked
in bold.

Brow AUs Eye AUs Mouth AUs
AU # 1 2 4 5 6 7 15 17 20 25 27

1 1.00 0.69 0.26 0.59 -0.08 -0.07 0.39 0.15 0.38 0.69 0.58
2 0.69 1.00 -0.18 0.76 -0.13 -0.23 0.02 -0.08 0.01 0.65 0.83

4 0.26 -0.18 1.00 -0.13 0.46 0.73 0.26 0.61 0.45 0.17 -0.23
5 0.59 0.76 -0.13 1.00 -0.08 -0.15 -0.09 -0.15 0.05 0.65 0.76

6 -0.08 -0.13 0.46 -0.08 1.00 0.53 -0.09 0.26 0.18 0.11 -0.13
7 -0.07 -0.23 0.73 -0.15 0.53 1.00 -0.08 0.43 0.31 0.14 -0.21

15 0.39 0.02 0.26 -0.09 -0.09 -0.08 1.00 0.54 -0.10 -0.15 -0.08
17 0.15 -0.08 0.61 -0.15 0.26 0.43 0.54 1.00 -0.12 -0.26 -0.21
20 0.38 0.01 0.45 0.05 0.18 0.31 -0.10 -0.12 1.00 0.54 -0.12
25 0.69 0.65 0.17 0.65 0.11 0.14 -0.15 -0.26 0.54 1.00 0.65

27 0.58 0.83 -0.23 0.76 -0.13 -0.21 -0.08 -0.21 -0.12 0.65 1.00

Table 5.3: Recognition accuracies (area under the ROC curve) with SVMs and Gabor features for the local
and global segmentations, using both the standard and augmented feature vectors (with inter-AU correla-
tion information).

Feature Vector
AU # Standard Augmented Standard Augmented

Local Local Global Global

1 89.97 95.13 96.43 96.82
2 94.58 97.40 95.17 95.51
4 93.20 95.09 97.04 97.47
6 89.71 90.73 96.12 96.09
7 98.53 98.86 98.64 98.83

17 93.29 97.56 95.90 96.24
27 99.54 98.59 99.83 99.83

just the 11 AUs we classified). If the correlation effect was truly responsible for the global segmentation

strategy’s superior classification performance, then there should be no statistically significant difference in

recognition accuracies of the local and global strategies when using the modified feature vectors.

We modified the feature vectors for AUs 1, 2, 4, 6, 17, and 27 - all the AUs for which the global seg-

mentation had shown superior performance when SVMs were used. Classification results are displayed in

Table 5.3.

The local segmentations for AUs 1, 2, 4, 6, and 17 all benefited by at least 1% accuracy from the appended

correlation information. The corresponding global segmentations, on the other hand, did not improve

substantially despite the added correlation data. These results suggest that the correlation information

was already present in the global segmentation but not in the local segmentation. It also shows how the

performance of an AU classifier can be “improved” by supplying information about other, related AUs.

The problem with this “improvement” is that, if the same classifier is applied to a different database with
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Figure 5.3: Examples of Haar features (selected by Adaboost for AU 1) used for AU classification in our
system.

different AU correlations, the accuracy may fall drastically.

Given the strong correlations within the Cohn-Kanade dataset, a conclusive answer to our original ques-

tion - whether a local segmentation yields higher accuracy - may not yet be attainable. To investigate this

issue effectively, one first needs a larger expression database in which AUs occur singly, or at least in which

the correlations between them are weaker.

5.3 Haar Features and Adaboost for AU Recognition

The second significant research contribution of this thesis to the FER literature is a study of the effective-

ness of using Haar features and Adaboost for FACS AU recognition. Recent computer vision research has

demonstrated that the Haar wavelet is a powerful image feature for object recognition. In this study we use

the same kinds of Haar-like features deployed in the Viola-Jones face detector [VJ04]. Examples of these

features are shown in Figure 5.3.

Because the number of such features in a face image is large, we use Adaboost both to select a subset

of these features and to perform the actual classification. We compare this Haar+Adaboost approach to

the popular Gabor+SVM method. Part of our source code for this experiment was based on the code of

[WRM04]. The next sections describe this comparative experiment in greater detail.

5.3.1 Feature Selection

The set of Haar features used by Viola and Jones is many times over-complete. While this allows very

fine-grained inspection of an image, it also increases the training time and can reduce generalization per-

formance. For these reasons, the Viola-Jones approach uses the Adaboost boosting algorithm as a means

of feature selection by constructing a weak classifier out of each Haar feature. Specifically, a threshold-

based binary classifier is created from each Haar feature so that the weighted training error is minimized.

During each round of boosting, the single best weak classifier for that round is chosen (corresponding to

a particular Haar feature). The final result of boosting is a strong classifier whose output is computed as a
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Figure 5.4: The local face regions of the mouth (left), eye (middle), and brow (right) regions from which
features were selected for each AU classifier.

thresholded linear combination of the weak classifiers. The Viola-Jones face detector has demonstrated that

this classification method is both fast and effective for object recognition.

5.3.2 Face Region Segmentation

In order to reduce the length of time necessary for the lengthy Adaboost-based feature selection process, we

designed our system to recognize AUs from local subregions of the face instead of the whole face window.

Performing this segmentation greatly reduces the size of the set of all possible features from which a few

can be selected. Local subregions were set to squares of width 24 pixels around the mouth, each eye, and

each brow. Figure 5.4 shows the face regions that were cropped from each image.

5.3.3 Feature Extraction

The Viola-Jones “integral image” method (see [VJ04] for details) was used to extract features from images.

For each AU, we used Adaboost to select 500 Haar features for classification. Features for classifying mouth

AUs were selected only from the corresponding mouth region. Features for the eye AUs were extracted both

from the left and the right eye regions; a similar approach was taken for the brow AU classifiers. Figure 5.3

shows examples of Haar features that were actually chosen for AU recognition during the feature selection

process.

5.3.4 Classification

Each feature in the set of 500 Haar features for each AU was fed to the corresponding weak classifier, which

outputs a label in {−1, 1}. The Adaboost-based strong classifier then outputs the final classification label for

that AU based on whether the weighted sum of the weak classifiers’ outputs exceeds the strong classifier’s

threshold. See Freund and Schapire [FS99] for details.
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Table 5.4: Recognition accuracy (area under the ROC curve) for the Gabor+SVM method and the
Haar+Adaboost method. The Haar+Adaboost approach performed well for the eye and brow AUs but
poorly for the mouth AUs.

Haar+Adaboost (H+A) versus Gabor+SVMs (G+S)

Method
AU # Gabor+SVM Haar+Adaboost Best

Brow AUs
1 89.97 89.72 =
2 94.58 97.67 H+A
4 93.20 90.34 G+S

Eye AUs
5 98.48 98.10 =
6 89.71 92.91 =
7 98.53 96.11 G+S

Mouth AUs
15 97.95 53.62 G+S
17 93.29 60.51 G+S
20 97.29 81.04 G+S
25 98.92 66.53 G+S
27 99.54 82.81 G+S

5.3.5 Results

Accuracy statistics measured as area under the ROC curve are given in Table 5.4. Actual ROC curves

are presented in Appendix B. As shown in the table, the Haar+Adaboost method achieved comparable

accuracy to the Gabor+SVM method for AUs of the eye and brow regions. Interestingly, it performed very

poorly for AUs of the mouth. We view two factors are possibly responsible for this performance difference:

First, it is possible that the Haar+Adaboost combination is only effective when many training examples are

available. For example, only 44 training examples were available for AU 15, which is the AU on which the

Haar+Adaboost method performed the worst (53.62%). The small number of training samples would not,

however, explain why the classifier AU 17, with only 68 examples, performed relatively well. The second

possible explanation for the poor performance on the mouth region is that mouth AUs exhibit greater

variability in the location of skin bulges and wrinkles than do the upper-face AUs [Bar]. It is possible that

the Gabor filters, since their Gaussian component implicitly performs smoothing, are less sensitive to this

variation.

5.3.6 Theoretical Performance Analysis

Besides comparing the Gabor+SVM and Haar+Adaboost methods in terms of accuracy, we also compare

them in terms of speed. We perform a theoretical analysis of run-time performance in this section and an

empirical one in the next. We consider both feature extraction and classification.
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Feature Extraction

The main advantage of Haar+Adaboost over Gabor+SVMs is speed. The steps involved in extracting Gabor

features from a face image are shown below. Algorithmic complexity is measured as a function of the

number of image pixels (N ). Note that FFT stands for Fast Fourier Transform.

1. Transform the image using the FFT: O(N log N)

2. For each filter

(a) Multiply the transformed image by the pre-computed filter: O(N)

(b) Inverse-transform the result using the Inverse FFT: O(N log N)

The number of filters P (in our system, 40) is a constant that does not depend on N . Thus, the computational

complexity of this algorithm is O(N log N).

The extraction of Haar features, on the other, is far less expensive. The necessary steps are as follows:

1. Calculate the integral image: O(N)

2. For each of M features

(a) Extract each feature from the integral image: O(1)

The number of extracted features M (in our system, 500) is a constant that does not depend on N . Hence,

the total time complexity for Haar feature extraction is O(N), which is considerably less than O(N log N).

An additional performance advantage offered by the Haar method is that adding an additional feature

to the extracted set increases the running time only by a constant number of CPU instructions. Adding

another filter to a filter bank, on the other hand, requires an additional O(N log N) machine instructions.

Classification

We compare the algorithmic complexity of classification in terms of the number of extracted features M .

Classification with the Haar+Adaboost method consists of the following algorithm:

1. Set T to 0

2. For each i of M features

(a) Determine if feature i exceeds threshold i

(b) If yes, then add αi to T .

3. Return 1 if T is at least 1
2

∑

i αi (the total threshold); return 0 otherwise.
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For M features, the algorithm is thus O(M).

Classification with a linear SVM is similar in algorithmic complexity to Adaboost. For a linear SVM,

the separating hyperplane can be calculated offline based on the support vectors and the corresponding

Lagrange multipliers; classification then requires only one inner product of the test point with the hyper-

plane. For M features (and thus M vector components), classification requires O(M) operations, which is

equivalent to the Adaboost method. It should be noted, however, that the popular libsvm library [CL01],

which we used in this thesis, implements linear kernels in O(Q∗M) time, where Q is the number of support

vectors. 1 Thus, in our software implementation, the Haar+Adaboost method performs much more quickly

than even the linear SVM.

Classification with a non-linear kernel SVM is generally slower. For higher-dimensional kernels, a test

point must be multiplied with each of Q support vectors, resulting in Q inner products and thus O(Q ∗ M)

operations. The cost of computing each inner product is also higher because of the kernel function itself,

which may be computationally expensive. Certain methods such as [DeC02] do exist, however, which may

serve to partially reduce the computational cost of SVM classification.

5.3.7 Empirical Performance Analysis

Feature Extraction

In addition to the theoretical analysis of the two feature types, we also performed an empirical study by

extracting features from sample input images. For the FFT implementation we used the popular library

FFTW (the Fastest Fourier Transform in the West) [FJ05]. For basic image manipulation, we employed the

simple and efficient TiP library (Tools for Image Processing) [GGJ].

We performed experiments for two different image sizes: 24x24 and 64x64. The smaller window size is

suitable for classifying facial expression from individual local regions of the face (e.g., mouth); the larger

window size is appropriate when analyzing the face as a whole. For Haar feature extraction, 500 selected

features were computed. For Gabor features, we applied a standard filter bank of 5 frequencies and 8

orientations and extracted Gabor responses at all points in each filtered image. The execution times were

measured on a Pentium 4 1.8 GHz machine and averaged over 1000 rounds of extraction; results are shown

in Table 5.5. The results show that, for 24x24 images, Haar feature extraction is approximately 80 times

faster than Gabor feature extraction. For 64x64 images, the Haar features can be extracted nearly 160 times

more quickly.

1The software implementation is simpler if all kernels - including the linear kernel - are implemented as the sum of Q inner
products.
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Full Gabor versus Selected Haar Extraction Times

Feature Type Resolution Extraction Time

Haar 24x24 0.11msec
64x64 0.31msec

Gabor 24x24 8.8msec
64x64 49.3msec

Table 5.5: Execution times of feature extraction for Gabor features versus selected Haar features.

Adaboost versus SVM Classification Times

Classifier Classification Time

Adaboost 0.02msec
SVM (Linear) 21.17msec
SVM (RBF) 93.97msec

Table 5.6: Execution times of classification for an Adaboost strong classifier versus a linear SVM.

Classification

Using the same parameters as in Section 5.3.7, we compared empirically the running times of the boosted

classifier of the Haar+Adaboost method with the SVM of the Gabor+SVM method. We used the libsvm

library [CL01] for the SVM implementation. Execution times are shown in Table 5.6. As illustrated by the

running times, the Adaboost strong classifier is 3 orders of magnitude faster than the SVM.

5.4 Summary

This chapter has investigated two important issues in the field of automatic FER: First, we compared local

to global segmentation of facial images in terms of accuracy when recognizing FACS AUs. As a follow-

up, we also studied the effect of inter-AU correlation within facial images on the recognition accuracies of

various AUs. Our results show that this correlation effect can impact recognition rates significantly. Such

correlation effects may be of little consequence when recognizing prototypical expressions, in which high

AU correlation is natural. They are of considerable importance, however, when analyzing single AUs,

as recognition rates will appear misleadingly high. We would thus like to underline the importance of

establishing a large, publicly available AU database with singly-occurring AUs to facilitate future research.

Second, we compared the popular Gabor+SVM method of AU recognition to the previously untested

Haar+Adaboost approach. Accuracy with the Haar+Adaboost approach was high for the eye and brow

AUs, but low for the mouth AUs. We discussed probable causes for these findings. Finally, we performed a

performance comparison of these two methods. Experimental results show that Haar+Adaboost operates

several orders of magnitude more quickly.
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Chapter 6

Real-Time SASL Video Analysis

In this section we apply the AU recognition system we developed in Chapter 5 to the real-world problem

of recognizing from video some of the expressions that occur in South African Sign Language. This task is

extremely challenging for contemporary FER systems because of the significant out-of-plane rotation that

occurs in natural human conversation. The fact that most publicly available AU training data are taken

from posed prototypical human expressions in strictly controlled laboratory environments instead of from

natural human behavior makes the challenge even more difficult. Nevertheless, we hope that, by analyzing

the performance of our system on this task, we may gain insight into how FER systems can be improved to

facilitate automated signed language recognition.

In any effort to design an automated system designed to recognize the facial expressions of a signed lan-

guage, it is important to understand how these expressions are used linguistically. Facial expressions, along

with movements of the head and upper torso, constitute the set of non-manual communication channels in-

volved in signed languages. In the following subsections we discuss the roles that non-manual actions of

signed languages can play and show example expressions from our target language: South African Sign

Language (SASL). Because linguistic research on SASL is so limited, however, we will illustrate certain

linguistic concepts common to signed languages with examples from American Sign Language (ASL).

6.1 Uses of Facial Expressions in Signed Languages

Just as in spoken languages, facial expressions can be used in signed languages to convey the affective state

of the speaker. In ASL, for example, the emotional states “sad”, and “smile” are signified by producing

the corresponding prototypical expression in the face (p. 371, [RMB90]). Unlike in spoken languages, facial

expressions in signed languages also provide crucial lexical, adverbial, and syntactic functionality that

extends far beyond the affective expressions mentioned above. We elaborate on and discuss the importance
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of each category of facial expression usage in the sections below.

6.1.1 Lexical Functionality

Some signs are either obligatorily or optionally accompanied by non-manual actions. In contrast to the non-

manual actions with a syntactic function, lexical non-manual actions are articulated only for the duration

of the accompanying manual gesture - they do not extend over neighboring parts of the sentence. The

ASL sign for “give in”, for example, is accompanied in the face by dropping the jaw for the duration of

the hand gesture (p. 16, [Lid80]). Another example in ASL is the sign for “not yet,” which requires that

the tongue protrude slightly. Without the accompanying facial action, the sign would instead mean “late”

(p. 40, [NKM+99]).

6.1.2 Adverbial Functionality

Non-manual actions can also serve an adverbial role in signed languages. Such actions are not required for

the articulation of a particular sign, but they may modify the intended meaning. In ASL, for example, the

sentence “the boy is writing a letter” can be changed to “the boy is writing a letter carelessly” by thrusting

the tongue during the manual sign for “write” (p. 371, [RMB90]). As with lexical facial expressions, adver-

bial expressions are executed only for the duration of the single sign that it modifies (p. 43, [NKM+99]).

6.1.3 Syntactic Functionality

In addition to their role in articulating single signs and adverbs, non-manual components of signed lan-

guage also provide crucial syntactic functionality. Several categories of such syntactic use of facial expres-

sions exist, including topics, relative clauses, conditionals, negations, and questions. We briefly describe each

category below.

Negations

One simple but important syntactic service that facial expressions provide is the negation of clauses. In

ASL, for example, although a manual gesture for “not” also exists, the non-manual action - consisting of

furrowed eyebrows and a shaking head - is obligatory (p. 45, [NKM+99]).

Conditionals

A conditional is an if -then structure describing one state or event that is conditional on another. An example

of a conditional is, “If you insult George, then Jane will be angry.” In ASL, conditionals are signified by

obligatory non-manual features including facial expression, eye movement, and head orientation. Without
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these accompanying non-manuals, the example sentence above would reduce to two simple propositions:

“You insulted George, and Jane got angry” (p. 372, [RMB90]).

Relative Clauses

A relative clause is a “dependent clause introduced by a relative pronoun” [Her00]. For instance, in the

sentence, “the person who bought the mop is frugal”, the relative clause “who bought the mop” serves to

specify which person is frugal. In ASL, a relative clause is signified by raising the eyebrows, tilting the head

backward, and raising the upper lip during the manual articulation of the clause (p. 22, [Lid80]).

Questions

In ASL, non-manual signs are used both for yes-no and wh-questions. As expected, yes-no questions are

those which ask the listener for “yes” or “no” response. In ASL, yes-no questions require that the eyebrows

be raised and that both the head and body be projected forward (p. 168, [Lid80]). Wh-questions correspond

to interrogatory pronouns such as “who” and ”what”, i.e., questions whose English counterparts begin

with the letters “wh”. Wh-questions must be accompanied by “furrowed brows, squinted eyes, and a slight

side-to-side head shake” (p. 111, [NKM+99]). These facial expressions are used for the same purpose in

SASL.

Topics

A topic is an element of “old information about which some comment will be made” (p. 22, [Lid80]), and

they are used extensively in signed languages. An example of a topicalized sentence translated from ASL

into English is: “Chris - Jessie likes him.” In this sentence, “Chris” is the topic; the fact that Jessie likes

him is the appended comment. In English, the sentence would have to read “As for Chris, Jessie likes

him” in order to preserve grammaticality. In ASL, however, this introduction is implicit. ASL utilizes both

“moved” and the more complex “base-generated” topics. Each type of topic is denoted by its own set of

eye, eyebrow, and head movements (p. 50, [NKM+99]).

6.2 Expression Intensity

So far in our discussion of the linguistic use of facial expressions in signed languages we have not men-

tioned expression intensity. The intensity carries important information that may benefit automatic linguis-

tic analysis. Whereas the non-manual components of lexical and adverbial signs may appear with uniform

intensity and for short duration, syntactic facial expressions typically reach an apex intensity and then grad-

ually diminish. The point of highest intensity corresponds to the “node of origin” (p. 45, [NKM+99]) with
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which the non-manual is associated. In ASL, for example, a sentence is negated both by using a hand

gesture and by simultaneously articulating a negative facial expression. The node of origin in this case

is the negative hand gesture, and the corresponding facial expression reaches its apex at that same mo-

ment (p. 45, [NKM+99]). While the pilot project of this chapter attempts only to recognize expressions as

present/absent, future systems will need to estimate the expression intensity as well.

6.3 Implications for Automatic Translation

Based on the usage of facial expressions in signed languages as described above, we can highlight two main

results that may influence the design of a signed language recognition system:

• Facial expressions that perform a lexical or adverbial function take place over a short duration. It is

thus conceivable that recognizing only the apex of expression intensity would be sufficient to enable

effective linguistic analysis.

• Syntactic facial expressions are articulated over a longer time span. Some method of smoothing of the

predicted expression intensity may thus be appropriate in order to estimate accurately the onset and

offset of syntactic facial expressions.

6.4 Recognizing Facial Expressions of SASL

For the pilot study of SASL recognition in this thesis, we employed the assistance of SASL speaker David

Petro from the Cape Town Bastion Center for the Deaf. Petro is deaf and, though knowledgeable in English,

communicates primarily in SASL. He is also a SASL instructor at the Bastion Center and thus knowledge-

able in SASL grammar and usage.

Together with Mr. Petro, we identified 18 nouns, adjectives, adverbs, and phrases from SASL which

occur commonly in conversation and which require facial expressions for their articulation. Three of these

SASL expressions - fast, far, and what kind - contain two parts (a) and (b) which must be performed by the

speaker in succession. We asked Mr. Petro to perform each of these 18 expressions in front of a digital

camera; the photographs are displayed in the table below. In the sections thereafter, we describe our FACS-

based approach to recognizing these SASL expressions automatically.
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A lot Angry Becomes smaller

Brag Can you (a) Can you (b)

Close together Dangerous Desire

Difficult Far (a) Far (b)
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Fast (a) Fast (b) Fat

Often My name is What is your name

What kind (a) What kind (b) Really

Relieved

6.4.1 Test Case: A Simple Story

Given this set of facial expressions, we composed a simple story which two deaf SASL signers from the

Bastion Center, David Petro and Carmen Fredericks, then narrated in front of a video camera. The story

was written not to achieve literary greatness, but rather to elicit most of the SASL expressions that were

photographed and analyzed of David Petro. The signers were requested to keep their faces in clear and

unobstructed view of the camera whenever possible, and to sign the facial expressions clearly and deliber-

ately. However, each participant exercised some freedom in narrating the text; hence, not all expressions in

our story were actually signed, nor do the expressions appear in exactly the same order as in the English
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Table 6.1: Full AU decomposition for SASL expressions. Each number represents an AU; each letter follow-
ing the AU number specifies the intensity (A through E); and an L or R preceding the AU number specifies
an asymmetric action on the left or right side of the face, respectively.

SASL Expression AU Decomposition

a lot 1E 2E L4A 5E 18D 34B 55C
angry 1A 2A 23C 25B 38A 52B 54A
becomes smaller 1B 2A L4B 18C 55B
brag 1B L2C R2A 4A 7B 20D 25A 53B 58D
can you (a) 1D 2D 4C 5C 25B 26E 55C
can you (b) 1D 2D 4D 5B 34D 55D
close together 1B 2B 4D 24D 38A 55C 57B
dangerous 1D 2D 4B 5C 7A 16C 22E 25D 55C
desire 1C 4C L6A 16B 25C 53C 55C
difficult 4D L6B 7D 20D 58C
far (a) 4D L6B 10B 25B 32C 38B 53D 55B
far (b) 1A 4C 25B 26D 53D 55B
fast (a) 1C 2C 4A 5A 23B 38B 55B
fast (b) 1C 2C L4B 5A 18B 25B 26B 55C 57B
fat 1C 2C 4B 5A 34D 39B 55C
my name is 1C 2B 4B 5C 7A 52B 53B 55C
often 1A 4D 7D 24C S26A 55D
really 1C 2C 4B 5A 10B 17B 25B 32B 55C
relieved 25A 53B 55C
what is your name 4D 7E 55D 57C
what kind (a) 4B 7C 10B 25A 53C 55D
what kind (b) 4B 25B 26C 53E 55D

text. The story text appears below, with the key SASL expressions in italics:

Hello, my name is . I want to tell you a story about my day. This morning I woke up late.
I was scared that my boss would be angry if I came late to work. My house is far from my office,
so I had to drive fast to save time. I often drive fast to work, but today it was dangerous because
the roads were wet.

I stopped at a traffic light. Beside me was a very fat woman whom I had long desired. Our
cars were close together, and I shouted to her, “what is your name?” She said, “Priscilla.” She then
started to brag about how fast her car was. I asked her, “what kind of car is it?” She said it was a
Porsche.

We decided to race to the next traffic light. I drove as fast as I could, but the rain made it
difficult to see. Her car was faster, and she won the race. I felt very embarrassed. But at least I
was not late to work - I arrived two minutes early. I was very relieved.

6.5 Approach

In this thesis, we endeavor to recognize the SASL expressions in the narrative above using FACS as an

intermediary framework. As the first step towards this goal, the photographs of Petro were FACS-coded

by expert FACS consultant Dr. Erika Rosenberg for both the presence and degree of the exhibited AUs. The

full AU decomposition of each expression, including intensity values, is listed in Table 6.1. Each AU which

appeared asymmetrically in only the left or right half of the face is preceded with “L” or “R”, respectively.
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FACS Action Units

SASL Expression 1 2 4 5 6 7 10 15 16 17 20 23 24 25 26 27 38 39

a lot X X X X

angry X X X X X

becomes smaller X X X

brag X X X X X X

can you (a) X X X X X X

can you (b) X X X X

close together X X X X X

dangerous X X X X X X X

desire X X X X X

difficult X X X X

far (a) X X X X X

far (b) X X X X

fast (a) X X X X X X

fast (b) X X X X X X

fat X X X X X

my name is X X X X X

often X X X X X

really X X X X X X X

relieved X

what is your name X X

what kind (a) X X X X

what kind (b) X X X

Table 6.2: AU mappings for each of the sample SASL expressions. Note that the expressions may also
contain other AUs not shown in this table - we list only those AUs for which we trained a classifier.

Table 6.2 contains similar information for each expression. In contrast to Table 6.1, however, this table

decomposes the expressions only in terms of the 18 AUs for which sufficient training examples existed in

our AU training set. This table confirms that our set of AU classifiers is rich enough to differentiate each

of the selected facial expressions of SASL even when expression intensity is not considered. In both the

approaches to recognizing SASL expressions that we describe below, we represent each SASL expression

as a vector

x = (au1, au2, au4, au5, au6, au7, au10, au15, au16, au17, au20, au23, au24, au25, au26, au27, au38, au39)

where each aui ∈ {0, 1}. Thus, each SASL expression vector x ∈ {0, 1}18 stores the set of AUs it com-

prises, as described in Table 6.2. The SASL expression for “fat”, for example, is represented by xfat =

(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). Given the expression vector x for each SASL expression, and given

the AU detection vector v containing the AUs present in a particular input image, we attempted to recog-

nize SASL expressions from the frames in a video sequence.

Recognizing each SASL expression can thus be decomposed into first detecting AUs, and then mapping

the exhibited AUs to the SASL expression that triggered them. In the sections below, we describe two

implementations of this technique: one in which the set of AUs must match the SASL expression exactly

(Exact Matching), and one in which the best-possible match (assessed using Cosine Similarity) is used for
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SASL expression prediction.

6.5.1 Method 1: Exact Matching

In our first approach to SASL expression recognition, we consider an expression to be present if and only if

the vector v of AUs present in the input image exactly matches the expression vector xi for SASL expression

i. This is a very strict matching condition, and it means that an expression consisting of AUs {1, 2, 4, 24, 38}

(“close together”) will not be recognized if the face image contains only AUs {2, 4, 24, 38}, nor will it be

recognized if the image contains {1, 2, 4, 5, 24, 38} (AU 5 is superfluous).

6.5.2 Method 2: Cosine Similarity

In our second approach to FACS-based SASL expression recognition, we considered a SASL expression xi

to be present if cos (∠ (xi,v)) = xi·v
‖xi‖‖v‖

≥ τi, where v is the vector of AUs detected in the input image

and τi is the expression-specific recognition threshold (determined empirically). This approach allows an

expression to be recognized even if, say, one or two AUs of a particular SASL expression are absent from the

face, or if a few extra AUs not in xi are contained in the face image. Since cos (∠ (xi,v)) = 1 ⇐⇒ xi = v,

the Exact Matching method of the previous subsection emerges as a special case of the Cosine Similarity

method.

The threshold τi would need to be determined based on a training set of SASL video data. Since our

training data were so limited, however, we employed a modified version of this algorithm in which each

video frame was mapped to the SASL expression xi for which the cosine similarity metric was highest. This

means that one SASL expression will be detected for every frame in the video sequence - a situation that

is admittedly improbable - but it also increases the chance that our expression recognizer will output the

correct expression for the frames that do contain a SASL expression.

6.6 System Design

Given the two methods of SASL expression mapping of the previous section, we now describe our SASL

recognition pipeline from start to finish. We used two alternative methods from the previous chapter for AU

recognition: Gabor+SVMs and Haar+Adaboost. The former has the advantage of higher overall accuracy

over all AUs, whereas the latter is advantageous in its speed. Note that, on our computer system, only the

Haar+Adaboost method was sufficiently fast to enable real-time performance.

• Input: Video frame containing face.

• Desired output: Predicted SASL expression.
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Table 6.3:
Apex Frames of Petro’s SASL Expressions

Expression Time (s) In-plane Out-of-plane Occlusion
Rotation Rotation

My name is 0.2 X

Angry 18.7 X

Fast (a) 22.0 X

Fast (b) 22.1 X

Close together 30.4 X

Fat 34.8 X X

Desire 40.4 X

What is your name 44.1 X X

What kind (a) 54.1 X X

What kind (b) 54.4
Far (a) 69.3 X X

Far (b) 69.5 X X

Difficult [to see] 75.7 X X

Relieved 87.1 X X

• Procedure:

1. Face detection: To determine the location of the face within the input image, we used the Ma-

chine Perception Toolbox MPISearch program [FDH+]. This program operates at frame rate and

outputs the coordinates of the found face box.

2. Face normalization: Given the location and size of the face (if found), the face is normalized to a

standard size.

3. AU recognition: Using either the Gabor+SVM or Haar+Adaboost method, estimate the AUs con-

tained within the input face.

4. SASL Expression mapping: Using either the Exact Matching or Cosine Similarity method, predict

the SASL expression of the current frame.

Using the Haar+Adaboost procedure, this pipeline is fully automatic and operates in real time.

6.7 Experiment

Given the two video narratives (by both Petro and Fredericks) of the SASL story listed previously, we mea-

sured the accuracy of the SASL expression recognition system described in the previous section. Together

with David Petro, we marked the video frames containing the apex of each SASL expression in both videos.

The expressions and the times when they occurred are listed in Tables 6.3 and 6.4. Note that, although each

SASL narrator was presented exactly with the story we listed above, they exercised some freedom in telling

it; hence, not all expressions occurred in the same order for both signers, and some expressions were not
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Table 6.4:
Apex Frames of Fredericks’ SASL Expressions

Expression Time (s) In-plane Out-of-plane Occlusion
Rotation Rotation

My name is 2.4 X X

Angry 17.0 X X X

Far (a) 21.4 X X

Far (b) 21.9 X X

Often 26.2 X X X

What is your name 37.8 X X X

What kind (a) 42.7 X X X

What kind (b) 42.8 X X

Difficult [to see] 51.8 X X

Fast (a) 53.7 X

Fast (b) 54.2 X

Relieved 62.4 X X

articulated at all.

Given each apex expression, occurring at some time t, we fed each video frame that occurred within the

time window [t − 0.2s, t + 0.2s] to our SASL expression recognizer. Given that the frame rate was 25 fps

(every 0.04 s), this amounts to 9 frames per apex.

6.8 Results

The predicted SASL expressions for each signer (Petro and Fredericks) and for each of the Gabor+SVM and

Haar+Adaboost methods are displayed in Tables 6.5, 6.6, 6.7, and 6.8 along with the exact cosine similarity

values. The predicted expressions using the Cosine Similarity method can be read directly from the table;

expressions were recognized with the Exact Matching method only when the cosine similarity value was

1.00, which occurred rarely. Note that, in some video frames, no face was detected at all, and hence that

video frame does not appear in the table. Frames whose cosine similarity value was 0.00 contained no

AUs, and for these frames the associated SASL expression was chosen arbitrarily. Unfortunately, both

the Gabor+SVM and Haar+Adaboost methods, combined either with Cosine Similarity or Exact Matching,

demonstrated only very modest results: only the “relieved” expression could be recognized from the video

input.

6.9 Discussion

Given the small size of our SASL video test set, it is difficult to draw statistically significant conclusions.

It does appear, however, that the Gabor+SVM method performed slightly better than the Haar+Adaboost

approach: for both the Petro and Fredericks videos, the former AU recognition approach recognized the
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Table 6.5: Recognition Using Gabor+SVM and Cosine Similarity Matching: Petro Video

Time Expression Cos Time Expression Cos Time Expression Cos

0.00 relieved 1.000 30.24 far b 0.447 54.28 what is your name 0.707
0.04 relieved 1.000 30.28 far b 0.500 54.32 relieved 0.577
0.08 relieved 1.000 30.32 far b 0.447 54.36 becomes smaller 0.471
0.12 a lot 0.000 30.36 relieved 0.577 54.40 relieved 0.500
0.16 relieved 1.000 30.40 far b 0.500 54.44 far b 0.447
0.20 relieved 0.707 30.44 far b 0.500 54.48 a lot 0.000
0.24 relieved 0.707 30.48 far b 0.500 54.52 a lot 0.000
0.28 relieved 1.000 30.52 far b 0.500 54.56 a lot 0.000
0.32 relieved 0.707 30.56 far b 0.500 54.60 becomes smaller 0.577
0.36 relieved 0.577 30.60 far b 0.500 69.08 a lot 0.433

18.52 becomes smaller 0.577 40.20 relieved 0.707 69.16 a lot 0.433
18.56 becomes smaller 0.577 40.24 relieved 0.707 69.24 a lot 0.433
18.60 relieved 0.707 40.28 relieved 0.707 69.28 relieved 0.447
18.64 relieved 0.577 40.32 far b 0.447 69.60 a lot 0.500
18.68 relieved 0.577 40.36 what is your name 0.408 75.48 what is your name 0.447
18.72 relieved 0.577 40.40 becomes smaller 0.500 75.72 a lot 0.408
18.76 relieved 0.577 40.44 becomes smaller 0.447 75.80 what is your name 0.707
18.80 relieved 0.707 40.48 what is your name 0.447 75.84 what is your name 0.577
18.84 relieved 1.000 40.52 what is your name 0.447 75.88 becomes smaller 0.408
18.88 relieved 0.577 40.56 far b 0.577 80.08 becomes smaller 0.408
18.92 a lot 0.447 40.60 far b 0.500 80.24 a lot 0.000
21.80 a lot 0.354 43.92 a lot 0.000 80.44 a lot 0.378
21.84 relieved 0.707 44.00 relieved 0.577 86.88 relieved 0.707
21.88 a lot 0.354 44.04 relieved 0.500 86.92 relieved 0.577
21.96 what is your name 0.447 44.08 becomes smaller 0.408 86.96 relieved 0.577
22.00 becomes smaller 0.577 44.12 far b 0.408 87.00 relieved 0.500
22.08 a lot 0.378 44.16 far b 0.447 87.08 relieved 0.577
22.12 what is your name 0.447 44.20 far b 0.500 87.12 relieved 0.707
22.16 a lot 0.000 44.24 far b 0.500 87.16 relieved 0.707
22.20 what is your name 0.500 44.28 relieved 0.500 87.20 relieved 0.577
22.24 what is your name 0.577 54.20 what is your name 0.707 87.24 relieved 0.577
22.28 what is your name 0.707 54.24 what is your name 0.707 87.28 relieved 0.707
30.20 relieved 0.577
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Table 6.6: Recognition Using Haar+Adaboost and Cosine Similarity Matching: Petro Video

Time Expression Cos Time Expression Cos Time Expression Cos

0.00 really 0.267 30.24 what is your name 0.707 54.28 relieved 0.500
0.04 relieved 0.577 30.28 relieved 0.447 54.32 relieved 0.500
0.08 what is your name 0.408 30.32 a lot 0.387 54.36 really 0.378
0.12 relieved 0.577 30.36 a lot 0.354 54.40 difficult 0.500
0.16 relieved 0.707 30.40 really 0.378 54.44 becomes smaller 0.289
0.20 relieved 0.500 30.44 a lot 0.447 54.48 often 0.354
0.24 relieved 0.408 30.48 what is your name 0.500 54.52 what is your name 0.354
0.28 relieved 0.577 30.52 becomes smaller 0.408 54.56 angry 0.316
0.32 really 0.267 30.56 a lot 0.408 54.60 becomes smaller 0.365
0.36 difficult 0.408 30.60 what is your name 0.500 69.08 relieved 0.577

18.52 far (b) 0.500 40.20 relieved 0.500 69.16 relieved 0.447
18.56 far (b) 0.577 40.24 difficult 0.354 69.24 fat 0.316
18.60 far (b) 0.577 40.28 far (b) 0.447 69.28 relieved 0.500
18.64 far (b) 0.500 40.32 becomes smaller 0.447 69.60 a lot 0.000
18.68 relieved 0.707 40.36 becomes smaller 0.408 75.48 what is your name 0.500
18.72 far (b) 0.577 40.40 relieved 0.447 75.72 relieved 0.577
18.76 relieved 0.577 40.44 relieved 0.500 75.80 a lot 0.408
18.80 what is your name 0.408 40.48 becomes smaller 0.408 75.84 what is your name 0.447
18.84 what is your name 0.408 40.52 far (b) 0.378 75.88 a lot 0.000
18.88 becomes smaller 0.378 40.56 difficult 0.408 80.08 a lot 0.354
18.92 a lot 0.408 40.60 becomes smaller 0.365 80.24 a lot 0.000
21.80 my name is 0.316 43.92 relieved 0.408 80.44 far (b) 0.378
21.84 my name is 0.346 44.00 far (b) 0.447 86.88 relieved 0.577
21.88 my name is 0.365 44.04 relieved 0.408 86.92 relieved 0.707
21.96 what is your name 0.353 44.08 relieved 0.408 86.96 relieved 0.500
22.00 what is your name 0.408 44.12 becomes smaller 0.577 87.00 becomes smaller 0.577
22.08 a lot 0.000 44.16 becomes smaller 0.577 87.08 relieved 0.447
22.12 often 0.316 44.20 becomes smaller 0.408 87.12 relieved 1.000
22.16 my name is 0.387 44.24 difficult 0.500 87.16 relieved 0.707
22.20 fat 0.316 44.28 becomes smaller 0.577 87.20 a lot 0.500
22.24 becomes smaller 0.333 54.20 a lot 0.000 87.24 really 0.378
22.28 what is your name 0.500 54.24 becomes smaller 0.333 87.28 becomes smaller 0.577
30.20 what is your name 0.500

Table 6.7: Recognition Using Gabor+SVM and Cosine Similarity Matching: Fredericks Video

Time Expression Cos Time Expression Cos Time Expression Cos

2.28 a lot 0.000 51.92 becomes smaller 0.577 54.28 becomes smaller 0.471
2.36 becomes smaller 0.471 53.52 becomes smaller 0.500 54.32 becomes smaller 0.577
2.40 becomes smaller 0.577 53.60 becomes smaller 0.408 54.36 becomes smaller 0.471
2.44 becomes smaller 0.577 53.64 becomes smaller 0.447 54.40 becomes smaller 0.471
2.52 what is your name 0.707 53.68 becomes smaller 0.447 62.20 a lot 0.000
2.56 a lot 0.000 53.72 becomes smaller 0.408 62.24 a lot 0.000
2.60 a lot 0.000 53.80 angry 0.365 62.28 relieved 1.000

16.80 what is your name 0.707 53.84 angry 0.365 62.32 a lot 0.000
21.48 difficult 0.500 53.88 a lot 0.000 62.36 a lot 0.000
21.76 difficult 0.500 53.92 relieved 0.447 62.40 relieved 0.707
51.60 a lot 0.000 54.04 becomes smaller 0.408 62.44 becomes smaller 0.577
51.64 what is your name 0.707 54.08 becomes smaller 0.408 62.48 a lot 0.000
51.68 far b 0.500 54.12 angry 0.365 62.52 a lot 0.000
51.72 far b 0.577 54.16 becomes smaller 0.577 62.56 far b 0.577
51.76 becomes smaller 0.447 54.20 becomes smaller 0.577 62.60 relieved 0.707
51.88 becomes smaller 0.577 54.24 relieved 0.707
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Table 6.8: Recognition Using Haar+Adaboost and Cosine Similarity Matching: Fredericks Video

Time Expression Cos Time Expression Cos Time Expression Cos

2.28 a lot 0.000 51.92 often 0.387 54.28 becomes smaller 0.577
2.36 my name is 0.346 53.52 relieved 0.577 54.32 becomes smaller 0.408
2.40 really 0.309 53.60 relieved 0.500 54.36 difficult 0.354
2.44 a lot 0.408 53.64 a lot 0.354 54.40 difficult 0.500
2.52 becomes smaller 0.408 53.68 difficult 0.250 62.20 difficult 0.500
2.56 really 0.267 53.72 relieved 0.707 62.24 difficult 0.500
2.60 what is your name 0.500 53.80 relieved 0.500 62.28 difficult 0.500

16.80 relieved 0.577 53.84 far b 0.500 62.32 difficult 0.408
21.48 a lot 0.000 53.88 often 0.408 62.36 really 0.378
21.76 a lot 0.000 53.92 becomes smaller 0.408 62.40 becomes smaller 0.471
51.60 a lot 0.289 54.04 relieved 0.577 62.44 a lot 0.354
51.64 what is your name 0.447 54.08 a lot 0.000 62.48 often 0.354
51.68 becomes smaller 0.408 54.12 becomes smaller 0.408 62.52 a lot 0.354
51.72 a lot 0.316 54.16 difficult 0.354 62.56 a lot 0.000
51.76 relieved 0.500 54.20 relieved 0.500 62.60 really 0.309
51.88 becomes smaller 0.333 54.24 relieved 0.500

“relieved” expression more consistently over the corresponding time window. This is consistent with our

findings in Chapter 5.

We believe that the primary difficulty for our system in recognizing the expressions was the variability

in head pose in the video. The signers were requested to look directly into the camera and to keep the

face clear as much as possible. Nonetheless, the video frames contain considerable in-plane and out-of-

plane head rotation as well as partial occlusion of the face by the hands, which makes both face detection

and facial expression analysis more difficult. Tables 6.3 and 6.4 show the presence or absence of rotation

and occlusion of the face (as assessed by a human coder) for each frame. Notice how most of the frames

contained out-of-plane rotation of the face.

Another possible explanation for the low accuracy of our system is variability in the AU decomposition

of the SASL expressions. If SASL expressions vary significantly in the AUs they comprise, either across

different signers or across different occurrences for the same signer, then a simple AU-to-SASL mapping

may not be possible, and natural language processing may be necessary in order to recognize a particular

expression confidently. Only further research into SASL facial expressions can answer this question.

6.10 Summary and Conclusions

We have constructed an automatic, real-time SASL expression recognition system that uses FACS as an

intermediary representation. We presented two approaches to mapping AUs to SASL expressions: an Exact

Matching method, and a Cosine Similarity method. We tested both approaches, using the Haar+Adaboost

and Gabor+SVM AU classifiers from the previous chapter, on two videos containing a SASL narrative.

Only one SASL expression (“relieved”) was recognized correctly from the video. We attribute these results
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to significant in-plane rotation, out-of-plane rotation, and occlusion of the face.

As demonstrated in Tables 6.4 and 6.3, natural signed communication is replete with 2-D and 3-D ro-

tation of the head and partial occlusion of the face. FER systems for real-world applications must thus be

robust to these conditions in order to be useful. In support of this goal, a publicly accessible facial expres-

sion database containing a variety of head poses would be extremely useful. As pointed out in Chapter

5, these databases should ideally contain singly-occurring AUs so that correlation effects do not adversely

affect the training of the classifier.
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Chapter 7

Conclusions and Directions for Further

Research

This thesis has made several important contributions to the field of automatic facial expression recognition.

First, we examined the issue of whether local face segmentation yields higher AU recognition accuracy

than whole-face analysis. We found that global analysis yields superior recognition rates on our dataset

and showed that this phenomenon is at least partially due to the strong correlation between AUs in the

Cohn-Kanade database. This result underlines the importance of establishing a publicly available dataset

in which AUs either occur individually or with low correlation.

Second, we have developed a new approach to FACS AU recognition based on Haar features and the

Adaboost classification method. Our system achieves equally high recognition accuracy as the Gabor+SVM

approach but operates two orders of magnitude more quickly.

Finally, we have proposed a plausible architecture for using FACS as an intermediary framework for

recognizing the facial expressions of SASL. While our system is not yet mature for effective SASL recogni-

tion, conducting this pilot study has proven that SASL expression recognition using FACS is fundamentally

possible. It also underlines the fact that considerable in-plane, out-of-plane, and occlusion of the face oc-

curs even in a laboratory environment, and that AU classifiers for real-world applications must be robust

to handling these conditions.

Conducting this research has revealed a number of new research questions, both on facial expression

recognition itself and on using FER systems to recognize signed languages. We discuss open questions in

both fields separately.
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7.0.1 Facial Expression Recognition

One of the most fundamental issues in automatic FER is the best type of feature to use for classification.

Many types of features exist, and some of these - e.g., Gabor, Haar, pixel intensities, geometric relation-

ships between fiducial points, etc. - have been applied to automatic expression recognition. Many more

exist, however, and have not yet been evaluated for expression analysis. In particular, edge orientation

histograms have been shown to outperform Viola-Jones Haar features (Levi and Weiss [LW04]) when the

training set is small. Scale-invariant “SIFT” features (developed by David Lowe [Low04]), which are re-

portedly invariant to changes in scale, translation, and rotation, may also be useful in the domain of FER.

As illustrated by our pilot study of SASL recognition, real-world expressions occur with considerable

3-D rotation and occlusion of the faces. One important open issue is whether the expressions within these

faces should best be recognized using pose-specific expression detectors, or instead by a single detector

that is robust to strong changes in pose. As one particular implementation of the latter strategy, 3-D face

tracking could be employed to rotate the detected face back to a canonical, frontal view, and expression

recognition could proceed from there [Mar].

Finally, regardless of which kinds of image features are used, an important question is the kind of classi-

fier used for expression recognition. Support vector machines have demonstrated good performance over

all the AUs we tested, as has Adaboost for particular AUs. Other boosting techniques, such as Logitboost

and Gentle Adaboost [FHT98], also exist, however, and may also prove effective for expression recognition.

7.0.2 Automatic Signed Language Recognition

From the limited data we collected, we consider it likely that the FACS framework is sufficiently discrimi-

native to enable SASL expressions to be distinguished and recognized by the AU sets that they comprise.

However, it remains to be investigated whether SASL signs are consistent in their AU decomposition across

different signers, and whether they are even consistent across different instances from the same person.

Despite the difficulties we encountered in our pilot study of SASL recognition, we hope that our soft-

ware prototype will provide a firm ground from which progeny of our project can progress. Researching

and writing this thesis has been enormously educational for this researcher; we hope that future members

of the SASL Project at the University of the Western Cape are equally rewarded.

65



Appendix A

Mathematical Fundamentals and

Computer Vision Algorithms

A.1 Distance between a hyperplane H and the origin

Let H be described as w · x + c = 0, where w is normal to H , and c is the bias. The shortest vector x∗ from

the origin to H must be normal to H and thus parallel to w. Since x∗ lies in H , it must satisfy

w · x∗ + c = 0 (A.1)

Since w and x∗ are parallel, their inner-product equals ‖w‖‖x∗‖, and thus

‖w‖‖x∗‖ + c = 0 (A.2)

‖x∗‖ =
−c

‖w‖
(A.3)

A.2 Time Complexity of 2-D FFT

It is generally known that the time complexity of a 1-D Fast Fourier Transform (FFT) is O(N log N), where

N is the number of discrete points to be transformed. A 2-D Fourier transform can be computed by first

transforming each column of the image, and then transforming each row of the result.

Suppose that a square image contains M rows and M columns for a total of M2 = N pixels. Then the

number of CPU instructions required to transform all the columns is O(M ∗ M log M). The rows of the

resulting image must then also be transformed, which requires O(M ∗ M log M) more operations. In total,
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the FFT of the 2-D image requires:

O(M ∗ M log M + M ∗ M log M) = O(2 ∗ M ∗ M log M) (A.4)

= O(M2 log M2) (A.5)

operations. We thus conclude that, for a square image with N pixels, the 2-D FFT takes O(N log N) opera-

tions.

A.3 Principle Component Analysis

Let T = {x1, . . . ,xm} be a set of training data such that each x ∈ IRn. The mean µ of T is assumed to be

zero; if µ 6= 0, then each x ∈ T is first reduced by µ. Principle component analysis of T consists of finding a

new sequence of n basis vectors e1, . . . , en, called the principle components; Each principle component ej is

calculated to give the jth largest variance when the vectors in T are projected onto it. Since T was assumed

to have zero mean, the variance resulting from each basis vector is determined by:

varj =
1

N − 1

N
∑

i=1

[eT
j (xi − µ)][eT

j (xi − µ)]T (A.6)

=
1

N − 1

N
∑

i=1

eT
j (xi − µ)(xi − µ)T ej (A.7)

= eT
j

(

1

N − 1

N
∑

i=1

(xi − µ)(xi − µ)T

)

ej (A.8)

=⇒ varj = eT
j Σej (A.9)

where Σ is the covariance matrix of T . When computing the first principle component e1, the variance

should be maximized. Maximizing varj is equivalent to maximizing the inner product of eT
1 and (Σe1),

which is greatest when eT
1 is parallel to the eigenvector of Σ with the largest associated eigenvalue λ1.

Computing e2 is then achieved by choosing ej to be parallel to the eigenvector with second-greatest asso-

ciated eigenvalue λ2, and so on.

After determining the principle components, PCA can then be used for dimensionality reduction by

projecting each x ∈ T onto the first p << n principle components, resulting in a smaller p-dimensional

feature vector. Because of the way the components were calculated, the resultant set of projections still

retain most of T ’s original variance.
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A.4 Optic Flow Analysis

In order to compute optic flow, image intensity is modeled as a function of not only x and y, but also of

time t. Suppose that a pixel moves from location (x, y) at time t to location (x + ∆x, y + ∆y) at time t + ∆t.

Then the intensity values at these two locations and times will be equal, i.e.:

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t) (A.10)

The right-hand-side of Equation A.10 can be approximated to first order by means of a Taylor series:

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) +
∂I

∂x
∆x +

∂I

∂y
∆y +

∂I

∂t
∆t + . . . (A.11)

where the ellipsis stands for small higher-order terms which are assumed to be small enough to ignore.

Combining Equations A.10 and A.11 we arrive at:

I(x, y, t) +
∂I

∂x
∆x +

∂I

∂y
∆y +

∂I

∂t
∆t = I(x, y, t) (A.12)

=⇒
∂I

∂x
∆x +

∂I

∂y
∆y +

∂I

∂t
∆t = 0 (A.13)

In order to convert from displacement of pixel location (x, y) into velocity, we divide both sides of the last

equation by ∆t:

∂I

∂x

∆x

∆t
+

∂I

∂y

∆y

∆t
+

∂I

∂t

∆t

∆t
= 0 (A.14)

=⇒
∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t
= 0 (A.15)

(A.16)

where vx = ∆x
∆t

and vy = ∆y
∆t

.

The partial derivatives of I with respect to x, y, and t represent the spatial and temporal image gradi-

ents; they can be computed using derivative filters over the image sequence. After computing these values,

there still remain two unknowns for only one equation, and thus the system is under-determined. In order

to solve for vx and vy , additional constraints must be provided. Commonly used algorithms for provid-

ing such constraints and for completing the optic flow calculation are the Lucas-Kanade method, which

assumes that flow is constant within small local windows about each pixel, and the iterative Horn-Schunck

approach, in which “smoothness” of an energy function is enforced.
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A.5 Haar Wavelets

A.5.1 One-dimensional Haar Wavelet Decomposition

The one-dimensional Haar wavelet decomposition of an n-element input array is computed recursively

using a two-step process of averaging and differencing. In order to emphasize the main concepts of the

algorithm, we ignore the normalization constants that must be considered in the actual transform.

In the averaging stage, the input array is reduced in length by half by averaging the value of every

pair of neighboring values. For instance, the input array [3, 1, 4, 6, 9, 3] is converted to [2, 5, 6]. Clearly,

information has been lost by this averaging step. In order to recover the lost information, n
2 detail coefficients

are appended to the output array during the differencing stage. Each detail coefficient d is the amount by

which the first element in the averaged pair exceeds that pair’s average. For example, for the first pair

(3, 1), whose average is 2, the first element 3 exceeds the average by 1; hence, the detail coefficient for the

first pair of numbers is 1. For the second pair (4, 6), the average is 5. Since the first number 4 exceeds 5 by

-1 (because 4 − (−1) = 5), the detail coefficient is -1.

After appending the n
2 detail coefficients to the array of averaged pairs, the array once again has length

n. The two stages of averaging and differencing are then repeated on the first half of the array. At the next

level of recursion, the first quarter of the array will be averaged, and so on. The recursion is complete after

log2 n levels when only one pair of numbers is averaged.

We illustrate the entire transform on a generic array of length 4, whose elements are [a1, a2, a3, a4]. The

transform proceeds as follows (each line represents one averaging and differencing step):

[a1, a2, a3, a4] (A.17)
[

a1 + a2

2
,
a3 + a4

2
, a1 −

a1 + a2

2
, a3 −

a3 + a4

2

]

(A.18)

[

a1 + a2 + a3 + a4

4
,
a1 + a2

2
−

a1 + a2 + a3 + a4

4
, a1 −

a1 + a2

2
, a3 −

a3 + a4

2

]

(A.19)

Combining fractions and factoring out the denominator, we can simplify the final array:

[

a1 + a2 + a3 + a4

4
,
a1 + a2 − (a3 + a4)

4
,
a1 − a2

2
,
a3 − a4

2

]

(A.20)

The first element of the output array equals the overall average of the input array. More important for

purposes of image classification, however, are the detail coefficients: The detail coefficients express the

difference between neighboring array values, or between sums of neighboring sets of array values. For

instance, the second element of the output array equals the difference in value between the first and second

pairs of array values. The last two elements of the output array equal the difference between the first
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and second, and third and fourth input array elements, respectively. In the realms of object recognition

and detection, when the two-dimensional Haar decomposition is applied to the input image, this property

becomes extremely useful in its effectiveness for detecting edges and other differences in pixel intensity.

In practice, the magnitudes of many of the detail coefficients are typically very small, and they can

be ignored with little reconstruction error [SDS94]. In this sense, the Haar decomposition naturally lends

itself to feature selection because some of the wavelet coefficients have a greater impact on the image’s

appearance than others.

A.5.2 Two-dimensional Haar Wavelet Decomposition

There are two methods of generalizing the one-dimensional Haar decomposition to the two dimensional

case. In the standard decomposition, the transform is first applied to each row of the input matrix. After

transforming all rows, the transform is then applied to each column.

In the non-standard decomposition, the transform is alternately applied to rows and columns at each re-

cursive level of the transform. More precisely, one averaging and one differencing stage is first applied to

each row of the input matrix. Then, one averaging and one differencing stage is applied to each column of

the matrix. The transform then proceeds again on the rows at the next recursive level.
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Appendix B

Representative ROC Curves

In this appendix we show a representative set of of 33 Receiver Operator Characteristics (ROC) curves from

the experiments we performed in Chapter 5. For each of the 11 AUs that we classified, and for each of the 3

AU recognition algorithms we studied - local Gabor+SVM, global Gabor+SVM, and local Haar+Adaboost

- we present the ROC curve and the Area Under the Curve (AUC) of one validation fold (Fold #1).

In some of the curves displayed below, the classifier was able to separate the positive and negative data

points completely, with no errors. In such cases, the Area under the Curve is 100%, and no “curve” appears

inside the graph window at all - only a set of dots corresponding to different classifier threshold values

appears on the x and y axes.

Note that the AUC values reported in Chapter 5 were averaged over all 10 cross-validation folds, and

that the AUC values listed for the individual ROC curves in this appendix can stray from this average

considerably. We thus strongly advise against comparing classifiers based on their performance of only a

single cross-validation fold.

B.1 Local Gabor+SVM

ROC curves and Area under the Curve values for the local Gabor+SVM classifier. Curves are shown for

Validation Fold #1 only.
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ROC Curve for Gabor+SVM (Local) for AU 27; Area=100.00%

B.2 Global Gabor+SVM

ROC curves and Area under the Curve values for the global Gabor+SVM classifier. Curves are shown for

Validation Fold #1 only.

73



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

H
it 

R
at

e

ROC Curve for Gabor+SVM (Global) for AU 1; Area=96.28%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

H
it 

R
at

e

ROC Curve for Gabor+SVM (Global) for AU 2; Area=99.26%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

H
it 

R
at

e

ROC Curve for Gabor+SVM (Global) for AU 4; Area=97.92%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

H
it 

R
at

e

ROC Curve for Gabor+SVM (Global) for AU 5; Area=100.00%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

H
it 

R
at

e

ROC Curve for Gabor+SVM (Global) for AU 6; Area=98.53%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

H
it 

R
at

e

ROC Curve for Gabor+SVM (Global) for AU 7; Area=100.00%

74



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

H
it 

R
at

e

ROC Curve for Gabor+SVM (Global) for AU 15; Area=94.74%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

H
it 

R
at

e

ROC Curve for Gabor+SVM (Global) for AU 17; Area=100.00%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

H
it 

R
at

e

ROC Curve for Gabor+SVM (Global) for AU 20; Area=100.00%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

H
it 

R
at

e

ROC Curve for Gabor+SVM (Global) for AU 25; Area=100.00%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

H
it 

R
at

e

ROC Curve for Gabor+SVM (Global) for AU 27; Area=100.00%

B.3 Local Haar+Adaboost

ROC curves and Area under the Curve values for the local Haar+Adaboost classifier. Curves are shown for

Validation Fold #1 only.
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[GTGB02] Salih Burak Göktürk, Carlo Tomasi, Bernd Girod, and Jean-Yves Bouguet. Model-based face

tracking for view-independent facial expression recognition. In Proceedings of the Fifth IEEE

International Conference on Automatic Face and Gesture Recognition, 2002.

[HE00] A. Hyvarinen and E.Oja. Independent component analysis: Algorithms and applications. Neu-

ral Networks, 13(4-5):411–430, 2000.

[Her00] American Heritage. American Heritage Dictionary of the English Language. Houghton Mifflin

Company, fourth edition, 2000.

[IEG06] Ramana Isukapalli, Ahmed Elgammal, and Russell Greiner. Learning to identify facial ex-

pression during detection using markov decision process. In Proceedings of the Seventh IEEE

International Conference on Automatic Face and Gesture Recognition, 2006.

[Iza79] C.E. Izard. The Maximally Discriminative Facial Movement Coding System (MAX). University of

Delaware, Instructional Resource Center, Newark, 1979.

[JFS95] C. Jacobs, A. Finkelstein, and D. Salesin. Fast multiresolution image querying. In Proceedings

of SIGGRAPH 95, New York, 1995.

80



[KClT00] Takeo Kanade, Jeffrey Cohn, and Ying li Tian. Comprehensive database for facial expression

analysis. In Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture

Recognition (FG’00), pages 46 – 53, March 2000.

[KQP03] Ashish Kapoor, Yuan Qi, and Rosalind W. Picard. Fully automatic upper facial action recog-

nition. In Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and

Gestures, 2003.

[KY97] Satoshi Kimura and Masahiko Yachida. Facial expression recognition and its degree estima-

tion. In Proceedings of the Conference on Computer Vision and Pattern Recognition, 1997.

[LA98] Michael Lyons and Shigeru Akamatsu. Coding facial expressions with gabor wavelets. In

Proceedings of the Third International Conference on Face & Gesture Recognition, pages 200–205,

Nara, Japan, 1998.

[LBF+04] G.C. Littlewort, M.S. Bartlett, I.R. Fasel, J. Chenu, T. Kanda, H. Ishiguro, and J.R. Movellan.

Towards social robots: Automatic evaluation of human-robot interaction by face detection and

expression classification. In Advances in Neural Information Processing Systems, volume 16, 2004.

[LFBM01] Gwen Littlewort-Ford, Marian Stewart Bartlett, and Javier R. Movellan. Are your eyes smiling?

Detecting genuine smiles with support vector machines and gabor wavelets. In Proceedings of

the 8th Annual Joint Symposium on Neural Computation, 2001.

[LFBM02] Gwen Littlewort, Ian Fasel, Marian Stewart Bartlett, and Javier R. Movellan. Fully automatic

coding of basic expressions from video. INC MPLab Tech Report 3, University of California,

San Diego, La Jolla, CA, 2002.

[Lid80] Scott K. Liddell. American Sign Language Syntax. Mouton, The Hague, 1980.

[Lit] Dr. Gwen Littlewort. Personal communication.

[LKCL98] J.J. Lien, T. Kanade, J. Cohn, and C. Li. Automated facial expression recognition based on facs

action units. In Third IEEE International Conference on Automatic Face and Gesture Recognition,

1998.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoint. International Journal

of Computer Vision, 60(2):91–110, 2004.

[LPA00] M.J. Lyons, J. Budynek A. Plante, and S. Akamatsu. Classifying facial attributes using a 2-d

gabor wavelet representation and discriminant analysis. In Proceedings of the Fourth IEEE Inter-

national Conference on Automatic Face and Gesture Recognition, pages 202–207, Grenoble, France,

April 2000.

81



[LR98] C. Lisetti and D. Rumelhart. Facial expression recognition using a neural network. In Proceed-

ings of the 11 th International FLAIRS Conference, 1998.

[lT04] Ying li Tian. Evaluation of face resolution for expression analysis. In Proceedings of CVPR

Workshop on Face Processing in Video, Washington, DC, 2004.

[LTC95] A. Lanitis, C.J. Taylor, and T.F. Cootes. A unified approach to coding and interpreting face

images. In Proceedings of the Fifth International Conference on Computer Vision, 1995.

[lTKC00] Ying li Tian, Takeo Kanade, and Jeffrey F. Cohn. Eye-state action unit detection by gabor

wavelets. In ICMI, pages 143–150, 2000.

[lTKC02] Ying li Tian, Takeo Kanade, and Jeffrey F. Cohn. Evaluation of gabor-wavelet-based facial

action unit recognition in image sequences of increasing complexity. In Proceedings of the Fifth

IEEE International Conference on Automatic Face and Gesture Recognition, 2002.
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