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1 Full EM Derivation

Recall the probability of correct image label given the labeler’s ability a; and the image’s difficulty parameter

Bj:
1

p(Lij = Zjlai, B5) = T b

(1)
The observed labels are samples from the {L;;} random variables. The unobserved variables are the true
image labels Z;, the different labeler accuracies «;, and the image difficulty parameters 1/8;. Our goal is to
efficiently search for the most probable values of the unobservable variables Z, a and 3 given the observed
data. Here we can use Expectation-Maximization approach (EM) to obtain maximum likelihood estimates
of the parameters of interest:
E step: Let the set of all given labels for an image j be denoted as 1; = {l;;» | ;' = j}. Note that not every
labeler must label every single image. In this case, the index variable 7 in [;; refers only to those labelers
who labeled image j. We need to compute the posterior probabilities of all z; € {0,1} given the o, 3 values
from the last M step and the observed labels:
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where we noted that p(z;|a, 3;) = p(z;) using the conditional independence assumptions from the graphical
model.

M step: We maximize the auxiliary function @, which is defined as the expectation of the joint log-likelihood
of the observed and hidden variables (1, Z) given the parameters (a, 3), w.r.t. the posterior probabilities of
the Z values computed during the last E step:
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where the expectation is taken over z given the old parameter values o as estimated during the last



E-step. Let us define p* = p(z; = k|1, a°!4, B°4). Then we can expand this expectation as:
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Based on Equation (1), we can compute p(l;;|z; = k, a4, ;) as:
p(lijlz; = 1,04, 65) = U(aiﬂj)l”(l _ J(aiﬁj))l_l”
and
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where o(z) = 1/(1 + e ") is the logistic function. To avoid clutter, we will represent o(a;/3;) simply as o.
Then, after expanding the summation over k into the two cases z = 0 and z = 1, we get:
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Taking the first derivatives causes the first summation to vanish since it is constant w.r.t « and 3. Using
the fact that d
—o(z) =0()(1 —0o(x
" o(@) = o(@)(1 - o(x))
we can differentiate () to arrive at:
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Similarly, we can derive:

0
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The gradient equation for % has an intuitive interpretation: The first two terms compute the empirical

probability of the given label lijlbeing correct given posterior probabilities of Z; from the previous E-Step.



The o that is subtracted is the model’s current estimate of the probability that /;; is correct given the current
estimate of the labeler’s ability and image’s difficulty. Hence, the likelihood function will locally increase by
increasing the labeler ability «; if the empirical estimate of the number of correct images labeled by labeler ¢
(weighted by image difficulty g is greater than its previous belief of correctness (again, weighted by difficulty).
Similar intuition applies to with regards to image difficulty'.

To find locally optimal values of the o and [ parameter we set the gradient to zero. The resulting
equations are non-linear and thus need to be solved using iterative methods.

2 Multi-class Inference Based on the GLAD Model

Here we briefly derive an optimal inference algorithm for the multi-class case. We assume there are K
different choices {1,..., K} for each image label. We continue under the initial assumption of GLAD as
described in the main paper, which is that the probability of correct labeling is

p(Lij = klzj = k, i, ) = o))
where o is the logistic function. For the multi-class case, we further assume uniform probability over all
incorrect responses, i.e., for all k' # k,
1
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The M-step is exactly the same as for the two-class case, except now the posterior probabilities for Z;
must be calculated over K classes, not just 2. For the E-step, we must modify slightly the equations for
probability of correctness and the auxiliary function: Then
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where 6(a,b) is the Kronecker delta function. For brevity we write §(/;;, k) simply as §. Then we can define

Q as
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Similar to the derivation in the paper, p*(§ — o) is positive only if [;; = k and represents the difference
between the prior belief that the labeler would answer correctly and the empirical correctness of his/her
response, weighted by probability that the true label is k. The expression In(K — 1) is 0 for the two-class
problem, and hence the derivation in this supplement reduces to the two-class solution as described in the
paper.

1Keep in mind that larger 3 means easier images.




