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1 Introduction

The Adaptive Character of Thought - Rational (ACT-R) is a theory of cognition developed principally by
John Anderson at Carnegie-Mellon University [4]. ACT-R models how humans recall “chunks” of information
from memory and how they solve problems by breaking them down into subgoals and applying knowledge
from working memory as needed.

ACT-R is the latest in a series of cognitive models in the ACT family; it succeeds ACT, ACTE, and ACT*.
With ACT* [2], Anderson endeavored to describe the human memory and reasoning faculties mechanistically
– i.e., to describe the mechanisms through which memory recall and cognition take place – by describing
how goals are broken down into subgoals using “production rules.” Later, in 1990, Anderson took a step
back from the existing ACT* and asked how cognitive processes such as memory, categorization, causal
inference, and problem solving could be cast as optimal solutions to the tasks that humans commonly
encounter. The underlying belief was that humans, from an evolutionary perspective, represent a local
maximum of adaptedness to their environment; therefore, their basic memory retrieval and decision-making
processes should also be somehow optimal. Optimality severely constrains the possible mechanisms of human
cognition and thus helps to reduce the search space for the true underlying mechanism.

With his new-found optimization approach, Anderson returned in 1993 to the ACT production rule-
based framework and revised ACT* to create ACT-R. The “R” (rational) implies that the human mind is
behaving “rationally,” in the sense that it wishes to solve problems to maximize reward and minimize cost.
This formulation of cognition (with costs and rewards) is somewhat reminiscent of stochastic optimal control
theory.

Unfortunately, in contrast to the precisely defined mathematics of stochastic optimal control, the ACT-R
literature is marred by a lack of specificity and consistency. The ACT-R definition is distributed across
a vast collection of journal articles and monographs, and no single text is sufficient to provide a complete
definition. Important parts of the ACT-R definition vary from source to source, with no explanation as to
why the change was made, or even an acknowledgement that the change had occurred at all. (An example
of this is the decay rate of a learning event for estimating its effect on activation.) Mathematically precise
terminology such as “log odds of X” (for some event X) is used injudiciously, without any proof that the
associated quantity equals what it should. The reader must sometimes guess what the author meant to say
in order for the equations to hold true.

This tutorial endeavors to describe clearly the main ideas of ACT-R from the top-level decision-making
processes down to the level of strengthening the presence of knowledge chunks in memory. The goal of
the document is to provide clarity where the original ACT-R literature was vague or inconsistent, and to
summarize in one relatively short document the “complete picture” of ACT-R (or at least the main points)
that are scattered throughout the vast ACT-R literature corpus.

1.1 Roadmap

We first introduce the crucial distinction between declarative knowledge and procedural knowledge in Section
2. The document then proceeds in a top-down fashion: Under the assumption that the agent (a human,
or possibly a computer) already has all of the knowledge he/she needs, we examine in Section 3 how the
decision-making process is made on a rational basis under ACT-R. In particular, we describe the mechanism
by which a particular “production rule,” corresponding to the “actions” of ACT-R, is chosen out of many
possible alternatives. In Section 4, we remove the assumption that knowledge is already available, and
describe the ACT-R processes by which new knowledge is acquired. This includes both the creation of new
memories, as well as the strengthening (and decay) of existing ones. Finally, in Sections 6 and 7, we discuss
how ACT-R partially models the Spacing Effect and the Power Laws of Learning/Forgetting.
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2 Declarative versus Procedural Knowledge

Under ACT-R, human knowledge is divided into two disjoint but related sets of knowledge – declarative and
procedural. Declarative knowledge comprises many knowledge chunks, which are the current set of facts that
are known and goals that are active. Two examples of chunks are “The bank is closed on Sundays,” and
“The current goal is to run up a hill.” Notice that each chunk may refer to other chunks. For instance,
our first example chunk refers to the concepts of “bank,” “closed,” and “Sunday,” which presumably are
themselves all chunks in their own right. When a chunk i refers to, or is referred to by, another chunk j, then
chunk i is said to be connected to chunk j. This relationship is not clearly defined in ACT-R – for instance,
whether the relationship is always symmetrical, or whether it can be reflexive (i.e., a chunk referring to itself
in recursive fashion), is not specified.

Procedural knowledge is the set of production rules – if/then statements that specify how a particular
goal can be achieved when a specified pre-condition is met – that the agent currently knows. A production
rule might state, for instance, “If I am hungry, then eat.” For the domain of intelligent tutoring systems,
for which ACT* and ACT-R were partly conceived, a more typical rule might be, “If the goal is to prove
triangle similarity, then prove that any two pairs of angles are congruent.”

The human memory contains many declarative knowledge chunks and production rules. At any point
in time, when a person is trying to complete some task, a production rule, indicating the next step to
take in order to solve the problem, may “fire” if the rule’s pre-condition, which is a conjunction of logical
propositions that must hold true according to the current state of declarative memory, is fulfilled. Since
the currently available set of knowledge chunks may fulfill the pre-conditions of multiple production rules,
a competition exists among production rules to select the one that will actually fire. (This competition will
be described later.) Whichever rule ends up firing may result either in the goal being achieved, or in the
creation of new knowledge chunks in working memory, which may then trigger more production rules, and
so on.

2.1 Example

Let us consider a concrete setting in order to make the above ideas more concrete. ACT-R most readily
lends itself to domains in which tasks can be decomposed into well-defined component operations. Suppose
the current task the person is working on is to add two multi-digit numbers. Table 1 proposes a plausible
set of productions with which this problem can be solved. Let us assume for now that the agent (a math
student, presumably) already possesses the productions given in Table 1) in his/her procedural memory, and
also that he/she can perform single-digit addition. This latter assumption could be fulfilled in two ways:
either the student has memorized these basic addition facts by rote, in which case they would be stored in
declarative memory; or he/she knows some counting procedure (e.g., using the fingers) to implement simple
addition. This procedure would correspond to another production rule in its own right, which for brevity
we have omitted.

Given the current goal to add two multi-digit numbers – in the present example, 36 and 23 – the
student’s mind, under the ACT-R model, implicitly matches the available declarative memory chunks to
the pre-condition of all productions. In the example shown, based on the contents of declarative memory,
there is always only one possible production rule that can be applied at each step, but ACT-R allows for
more general scenarios and specifies how to select from multiple production rules whose pre-conditions are
all fulfilled.

We briefly describe the execution of the first few steps. At the onset, the only contents of memory
relevant to the addition task is that the goal is to add two numbers. This “chunk” of information – a goal
chunk, in this case – matches the pre-condition of only a single production, P1. After some small amount of
memory retrieval time (latency of production matching will be described in Section 4), the production will
“fire,” meaning that its action – embedded in the “Then” part of the production rule – will be executed. In
the case of P1, a new chunk is written to declarative memory storing the information k=0, and a subgoal
“Process columns” is pushed onto the “goal stack.”
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Production Rules
P1 If the goal is to add two numbers

Then push a subgoal to process each of the columns with k = 0.
P2 If the goal is to process each of the columns

and the last processed column was k (counted from the right)
and column k + 1 exists
Then push a subgoal to process column k + 1.

P3 If the goal is to process each of the columns
and the last processed column was k (counted from the right)
and column k + 1 does not exist
Then pop subgoal.

P4 If the goal is to process column k
and the digits in the column are xk, yk, and carry ck,
and zk = xk + yk + ck < 10,
Then write zk below column k; pop subgoal.

P5 If the goal is to process column k
and the digits in the column are xk, yk, and carry ck,
and zk = xk + yk + ck ≥ 10,
Then write the one’s digit of zk below column k; set ck+1 to 1

(adding a column of 0’s as necessary); pop subgoal.
P6 If the goal is to add two numbers

and all the columns have been processed
Then pop the goal.

Table 1: Set of production rules sufficient to perform base-10 addition.

The above paragraph describes one complete step of execution within the decision-making framework of
ACT-R. At this point, a new goal chunk sits at the top of the goal stack, and declarative memory contains
a new chunk (k=0). The process then proceeds as before – the set of declarative memory chunks is matched
to all the productions’ pre-conditions, causing one of these productions to fire. At later points of execution,
instead of “pushing” a subgoal onto the goal stack, a “subroutine” of execution will have completed and a
production will instead “pop” a goal chunk off the stack.

It should be noted that ACT-R only supports a single goal stack; how multiple conflicting or completing
goals (which are ubiquitous in real life) are handled is not explored. A theory of goal pre-emption – the
process whereby a more important goal interrupts decision-making on behalf of a less important one – is
also not developed.

The entire production queue from start to finish for the given addition problem (36+23) is shown in Figure
1, along with the contents of working memory and the state of the environment at each time-step. In the
next section, we describe the general decision-making process under ACT-R in which multiple productions
must compete for execution.

3 Decision Making in ACT-R

At any moment in time, the knowledge chunks in declarative memory may fulfill, or match, a part of the
pre-condition of a production rule (or of multiple production rules). When all parts of a production rule’s
pre-condition are fulfilled (recall that a pre-condition is a logical conjunction), then production rule itself
is said to match/be matched. Given multiple production rules that are matched, a decision must still be
made as to which production rule will actually fire (be executed). This decision is made on the basis of the
expected value V of each production that matches, as well as the time t when the matching occurs. The
expected value V is learned by the agent through experience, and the time of match t is dictated by the

3



Goal stack
Variables 
(chunks)

Add numbers

Goal stack
Variables 
(chunks)

Add numbers

P1

Process columns

Goal stack
Variables 
(chunks)

Add numbers

P2

Process columns

Process column 1

k=1
x1=6
y1=3
c1=0

Goal stack
Variables 
(chunks)

Add numbers

P4

Process columns

k=1
z1=9
x1=6
y1=3
c1=0

Goal stack
Variables 
(chunks)

Add numbers

Process columns

k=2
x2=3
y2=2
c2=0

...

P2

Process column 2

Goal stack
Variables 
(chunks)

Add numbers

Process columns

k=2
z2=5
x2=3
y2=2
c2=0

...

P4

36
+23

36
+23

36
+23

36
+23

9

36
+23

9

36
+23

59

Goal stack
Variables 
(chunks)

Add numbers

k=3
z2=5
x2=3
y2=2
c2=0

...

P3

36
+23

59

Goal stack
Variables 
(chunks)

k=3
z2=5
x2=3
y2=2
c2=0

...

P6

36
+23

59

k=0

Declarative Memory Environment EnvironmentDeclarative Memory

Figure 1: An example trace through an addition problem using the productions in Table 1.
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Figure 2: Flowchart of how an ACT-R agent decides which production to select (fire).

latency of matching, which decreases with learning. We will discuss learning in Section 4; for now, however,
assume that the time of matching t, and the expected value V , of each production is already known by the
agent.

3.1 Flowchart

The decision process of choosing which production to fire is shown in Figure 2. Suppose production si had
matched at time t and that the expected value of si is Vi = piG − Ci, where G is the reward of achieving
the goal, p is the probability of achieving the goal if production si fires, and Ci is the expected cost (both
immediate and future) of si. Note that Ci refers to “real-world” costs of performing the production’s action
(e.g., the cost of gasoline if, for instance, driving a car is involved), not memory retrieval costs (which will
be discussed momentarily). According to ACT-R, the agent must decide whether to choose (fire) production
si, or instead to wait for a better production sj (with higher value Vj). This decision is made by assessing
whether the expected gain of waiting exceeds the expected cost – we call this τ .
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In ACT-R, the cost of waiting is modelled by a single constant, designed to reflect the memory retrieval
cost of matching another production sj in the future. A constant valued cost can only approximate the
true cost for two reasons: first, several higher-valued productions may in fact end up matching (if each is
better than the last) and thus being retrieved, and hence the cost should actually vary with the number
of productions whose value exceeds Vi. Second, each production rule may refer to a different number of
declarative memory chunks; presumably, retrieving each of these takes some energy as well. Nevertheless, a
constant-valued τ provides at least some approximation of waiting costs.

It is difficult to infer from [4] the exact process by which the above rational decision is made. Two
alternative interpretations are possible:

1. At time t (when production si fired), the agent implicitly computes a fixed amount of time T during
which it will wait for higher-valued productions. If no higher-valued production matches during this
interval, then si is fired; if production sj matches such that Vj > Vi, then the time t of the last-matched
production is updated (to the time sj matched), and the decision process starts over.

2. At each moment in time t′ ≥ t (until infinity), the agent will decide, using some binary decision rule
D(t), whether to accept si as the best choice, or to wait for a possibly higher-valued production to
match. If at time t′ another production sj matches such that Vj > Vi, then the decision process starts
over, with Vj the new value-to-beat.

In fact, these two varying formulations may be reconciliable, if D(t) is chosen somehow to be consistent with
T . In ACT-R, the decision rule D(t) is:

Fire if
∫ G
Vi

(x− Vi)Zt(x;Vi)dx ≤ τ
Wait otherwise

(1)

Zt(x;Vi) is the probability distribution that a production with value x will ever match, some time between
t and infinity, and τ is the cost of waiting (retrieving a future production), described above. Zt is defined as
(see [4], p. 62, and [3], p. 215):

Zt(x;Vi) =
1

t(G− Vi)
e
− 1

t(G−Vi)
(G−x)

This distribution integrates to 1 iff x ∈ [−∞, G], i.e., if future productions are bounded above by the value
of G.1 Note that the probability of a production with value x occurring decreases with time; this was
intended by Anderson to model the idea that higher-valued productions should match earlier than lower-
valued productions [4]. It is important to realize that, according to this definition of Zt, t is not the time
when the production with value x fires.

Applying this decision rule D(t) at each time t′ ≥ t implicitly results in a time-window T for which the
agent will end up waiting after production si fired. Hence, the two alternative formulations posed above are
somehow equivalent. However, how to calculate T from D(t) is unclear.

3.2 Selecting from Multiple Productions

Each production rule has an associated expected value:

V = pG− C (2)

where G is the reward earned by reaching the current goal, p is the probability that the goal will be reached
if the production is selected, and C is the expected immediate and future costs of selecting the production.

Suppose a production i with value Vi is matched at time t, and suppose V ∗ is the highest value production
that can ever match the current set of declarative knowledge chunks. (Recall that productions have a latency
before they match.) Then production i will fire (be selected) iff:

E[V ∗ − Vi] ≤ τ
1Note that, under this distribution, higher -valued productions are given a higher probability of occurring. It is unclear

whether this was intended.
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for a fixed threshold τ . This expectation is computed over the distribution Zt(V ∗) which is the probability
of a production firing with value V ∗. Under ACT-R, Z is dependent on t in order to “allow for the possibility
that later instantiations are less likely to be as good as earlier instantiations” ([4], p. 62). Hence, production
i will fire iff: ∫ G

V

(V ∗ − V )Zt(V ∗)dV ∗ ≤ τ

(Note that G is the maximum value a production could have since p ∈ [0, 1] and C > 0.)

4 Learning in ACT-R

In ACT-R, learning consists of creating new knowledge chunks and production rules in memory, and in
strengthening these memories through use. We discuss each category of learning below.

4.1 Creating New Knowledge Chunks

Very little is said about how ACT-R models the initial creation of declarative memory: Either a new chunk
is “created as the encoding of external events” ([4], p. 70), or a chunk is written to memory as the result of
an executed production rule. The letter case is exemplified in Figure 1, where the knowledge chunk (variable
k) that contains the column currently being processed is updated (k is incremented by 1 in P2).

4.2 Creating New Production Rules

The initial creation of productions is somewhat more developed. New production rules are formed through
several processes, including: proceduralization, composition, generalization, and analogy.

4.2.1 Proceduralization

Production rules often contain variables to refer to particular values on which the production operates. An
example was shown in Figure 1 for the addition of multi-digit numbers. After performing the same exact
task many times, new productions can arise in procedural memory which contain the parameter values
“hard-coded” into them. For instance, if the addition 36 + 23 is performed repeatedly, then the laborious
application of the six production rules could be skipped by creating a new production: “If the goal is to add
36 and 23, then write 59.” This is known as proceduralization and is a form of compilation under ACT-R
[1]. However, ACT-R proposes no model of when or under what conditions such a proceduralization will
occur.

4.2.2 Composition

If two productions perform problem-solving steps in sequence, then the productions can be combined. Since
applying each production requires some cost, performing both productions in one step can potentially save
computational resources such as time and/or effort. For an example of composition, if P1 (not the one in
Table 1) has the effect of multiplying both sides of the equation 4

5x = 1 by 5, and P2 divides both sides by
4 (to solve for x), then a new production – call it P3 – could combine these steps and multiply both sides
by 5

4 .

4.2.3 Generalization

Generalization occurs when many similar production rules have already been stored, from which a more
general rule can be learned inductively. For example, a child may already know that the plural of “cat”
is “cats,” and that the plural of “dog” is ”dogs.” From these rules, he/she may infer that a plural can be
formed by appending an ”s” to the singular. The astute reader will note that there are many exceptions to
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this rule – for instance, “ox” and “oxen”, or “octopus” and “octopodes.”2 This necessitates what is called
discrimination, in which additional production rules are learned to handle the exceptions.

4.2.4 Analogy

When presented with a new problem for which no solution (in the form of production rules) is known, a
human can reason by analogy from previously seen example solutions to similar problems. For example,
having encountered the programming problem in which a variable is to be increased by 4, whose solution (in
C) is x += 4, he/she may reason that the solution to the similar task of multiplying a variable by 4 might
be x *= 4, assuming the syntax for multiplication (*) was already known. Analogy-based learning requires
that the learner bew able to create a mapping from the known example to the present task. In the case
above, the mapping was from addition to multiplication. The new production rule is created by applying the
same mapping to the solution production of the example problem, i.e., “...Then write x += 4” is mapped
to “...Then write x *= 4.”

Analogy may also occur even if (perhaps inefficient) production rules already exist which can solve the
current problem. According to Anderson, this could potentially be modeled under ACT-R by assuming the
existence of a meta-production – analogy – which models the value of learning new productions for future
use.

4.3 Strengthening Existing Chunks

In ACT-R, the strength in memory of a knowledge chunk is called activation. A chunk can gain activation
through use: a chunk is used when it matches against some production rule that fires. This definition is also
consistent with the idea of memory strength increasing through practice by introducing a trivial “recall”
production: by defining the current goal to be “Practice i,” and defining a production as “If the goal is to
practice i, then recall i.”

Anderson posits that the activation A(t) of a knowledge chunk is the log-odds that, at time t, it will
match to some production rule that ends up firing. 3 The activation A(t) of a particular chunk is defined
as:

A(t) = B(t) +
∑
j

wjsij (3)

where B(t) is the base activation of the knowledge chunk at time t, and the summation is the associative
strength of the chunk dependent on related chunks, defined as “the elements in the current goal chunk and
the elements currently being processed in the perceptual field” ([4], p. 51). Each wj ∈ [0, 1] “reflects the
salience or validity of [related] element j.” The sij ∈ [−∞,+∞] are “the strengths of association to i from
elements j in the current context.”

The base activation B(t) is increased whenever it is “used,” either through practice (“learning events”)
or when matched to a production rule.

B(t) = ln
∑
k

t−dk +B (4)

The decay rate d is defined in the ACT-R literature in various ways:

• In [4], the decay rate d is a constant for all k.

• In [6], the decay rate of activation for the particular learning event k is defined as dk = max{d1, b(tk−1−
tk)−d1}4 where d1 (a constant) is the decay rate of the first learning event for the chunk, and b is a

2The proper English plural form of “octopus” is either “octopodes” or “octopuses.”
3In fact, he defines activation in two conflicting ways: in [4], p. 64, chunk activation is the log-odds that the chunk matches

a production that fires; in [4], p. 50, however, activation is merely the log-odds of matching any production, not necessarily
the one that fires. This distinction is crucial.

4In [6], the base was actually tk − tk−1, but since older events have longer decay times t, this would result in a negative
base, and hence a complex number for the decay, which was presumably unintended.
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constant. The difference tk−1−tk expresses the spacing effect – the notion that tight spacing of learning
events results in lesser activation gains than longer spacing.

• In [8], dk = cemk−1 + α, where c and α are constants, and mk−1 is the activation of the chunk at the
time of the previous learning event (k − 1). This definition also expresses the spacing effect since, if
the activation was already high at the previous learning event k − 1, then the decay rate of the kth
learning event will also be high.

4.4 Learning Associative Weights

The activation Ai(t) of chunk i is also afffected by the presence of other chunks in the current context. The
notion of context in ACT-R is not clearly defined, but it is described roughly as “the elements in the current
goal chunk and the elements currently being processed in the perceptual field” ([4], p. 51). Presumably,
the elements of the goal chunk refer to those chunks to which the goal chunk is connected (in the sense of
Section 2).

Suppose chunk j is in the current context. Then its effect on Ai(t) is as follows: if i is connected to j,
then the log-odds of chunk i matching to a production that fires (i.e., i’s activation) is increased by wjsij .
The wj are barely defined at all, except that each wj ∈ [0, 1], and that it “reflects the salience or validity
of [related] element j.” [7] suggests that the wj express “attentional weighting, i.e., the variable degree of
attention different individuals are able to dedicate to the elements of the current context.”

The sij ∈ [−∞,+∞] are “the strengths of association to i from elements j in the current context” ([4],
p. 51). They are weights that are learned based on the history of chunk i matching a production that fires
with or without the accompanying presence of chunk j in the current context. More precisely, sij represents
the log-likelihood ratio term

log
p(Cj | Ni)
p(Cj | Ni)

where Cj is the event that chunk j is in the current context and Ni is the event that i matches a production
that fires. sij can be approximated as

sij = log
p(Cj | Ni)
p(Cj | Ni)

≈ log
p(Cj | Ni)
p(Cj)

= log
p(Ni | Cj)
p(Ni)

The justification for this approximation given in [4] is that knowing the outcome of Ni cannot substantially
affect the probability of event Ni since there are presumably very many chunks in all of declarative memory.
The two terms in the fraction, p(Ni | Cj) and p(Ni), can be estimated empirically based on the history of
productions that fired, and the chunks that matched them, and the context at each moment a production
fired. In [4], a prior probability for both of these terms was also employed.

4.5 Learning Production Success Probability and Production Costs

In order to estimate the value of a production V = pG − C, the terms p and C must both be computed,
where p is the probability that the production will lead to the goal being achieved, and C is the expected
immediate and future cost of firing this production. Probability p can be decomposed into the probability
that the production s itself will succeed, i.e., have its intended affect, multiplied by the probability that the
goal will be reached conditional on production s succeeding. The first probability, which is called q in [4],
can be estimated by updating a Beta distribution every time that a production either succeeds or fails. The
second quantity, called r, is estimated by ACT-R heuristically in one of two different ways: from the cost
already incurred in achieving the goal (the assumption is that, the higher the total cost already spent, the
lower the probability should be), or from the similarity between the current state and the goal state.

The notion of a production “succeeding” and the real-world “costs” involved in a production are not
thoroughly developed in ACT-R. As stated by the author himself in [3], the proposed methods of estimating
p and C are not optimal, but rather only plausible. We do not review them in detail in this tutorial.
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More conventional methods, from the perspective of the machine learning community, for estimating these
quantities are available in the reinforcement learning literature for Markov processes.

4.6 Strengthening Existing Productions

Analagous to activation for knowledge chunks, the measure of memory strength of a production rule is the
production strength, S. In [4], S is supposed to be the log-odds that the production rule will fire, and it is
defined as:

S(t) = ln
∑
k

t−dk +B (5)

where the k indexes events in which the production fires ([4], p. 293), and B is a constant. (It is unclear
from [4] if the B in 5 is the same B as in 4.)

4.6.1 Cautionary Note

Equation 3 supposedly models the log-odds that a particular chunk will match the production that fires, and
5 models the log-odds of a particular production rule firing. However, these probabilities are not independent:
for instance, if chunk i is the sole chunk referenced by production rule s, and if Ai(t) = −∞ (i.e., the chunk
has no chance of being matched to the rule that fires), then S(t) must also equal −∞. Moreover, since
production firing is modelled as a competition between multiple production rules that fired, the log-odds of
a particular production firing cannot be calculated independently of other productions. For both the above
reasons, the associated equations cannot truly equal the log-odds that they are claimed to represent.

4.7 Latency of Production Rule Matching

Learning can also decrease the latency involved in a production rule matching. The latency of a production
rule s is defined as the period between the first moment that all of the knowledge chunks in the pre-condition
of s were in memory, to the time when s actually matches. This latency is modeled as:

L(t) =
∑
i

Be−b(Ai(t)+S(t)) (6)

where the summation is over the required knowledge chunks for the production, Ai(t) is the “activation” (a
measure of strength in memory, described below) of the knowledge chunk at time t, and S(t) is the strength
of the production itself at time t. B and b are constants.

5 Memory

5.1 Relationship of Latency to Probability of Recall

The probability of recalling a knowledge chunk is

P (t) =
1

1 + e−(A(t)−τ)/s

which means that a knowledge chunk will tend not to be remembered if its activation A(t) is below τ . This
is consistent with ACT-R because certain productions will never fire if their latency is too long.

6 The Spacing Effect

The spacing effect is a psychology phenomenon whereby probability of remembering an item at test-time can
be increased by scheduling practice sessions such that a substantial time difference exists between successive
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sessions. Intuitively, if one had just drilled a particular item a few seconds ago, then it will make little
difference to the person’s memory if he/she immediately drills it again. The spacing effect can be modeled
in ACT-R in at least two different ways, as explained in Section 4.3.

7 The Power Laws of Learning

7.1 Latency

Though much touted for supposedly modeling the power law of learning, ACT-R in fact exhibits only a
tenuous relationship with this phenomenon. One form of the power law of learning is that the latency of
a correctly retrieved declarative memory chunk L decays as a power function, which has the general form
L(t) = At−k for constants A and k assuming that the number of practice sessions grows with t. However,
in ACT-R, in order for this relationship to hold, one must assume that the decay rate d of multiple practice
sessions is constant (which then destroys the modeling of the spacing effect), and also that the time between
practice sessions tk−1 − tk is likewise some constant ∆t. One must also consider the latency of a knowledge
chunk in isolation from any particular production, as in [9] – in the ACT-R definition in [4], however, latency
is only explicitly defined for the instantiation of a production rule (matching of its pre-condition to chunks);
hence, strictly speaking, this too is an approximation.

Under these assumptions, the expected latency of recall of a knowledge chunk is approximately modeled
by a power function. (The proof below is adapted from [5]). The latency of recall of a particular chunk as
defined in [9] is:

L(t) = Fe−A(t) + C

where A(t) is the activation of the chunk at time t, and F and C are constants, such that C represents some
fixed time cost of retrieval of the chunk. Since the only component of A(t) that depends on t is B(t), let us
ignore these terms as well (since they can be folded into F ) – these terms are the associative strength term
and the constant B term in Equation 4. Then,

L(t) = Fe−B(t)

= Fe− ln
∑K

k=0
t−d
k

= F
1∑K

k=0 t
−d
k

Now, since the learning events indexed by k were assumed to be equally spaced in time, we can rewrite this
as:

L(t) = F
1∑K

k=0((K − k)∆t)−d

= F
(∆t)d∑K

k=0(K − k)−d

= F
(∆t)d∑K
k=0 k

−d

≈ F
(∆t)d∫K

k=0
k−ddk

= F
(∆t)d

K1−d/(1− d)

= F (∆t)d(1− d)Kd−1

11



The number of learning events K is a function of t: K(t) = t
∆t . Hence:

L(t) = F (∆t)d(1− d)
(
t

∆t

)d−1

= Gtd−1

for some constant G.
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